Factor
\left(2h-3\right)\left(5h+3\right)
Evaluate
\left(2h-3\right)\left(5h+3\right)
Share
Copied to clipboard
a+b=-9 ab=10\left(-9\right)=-90
Factor the expression by grouping. First, the expression needs to be rewritten as 10h^{2}+ah+bh-9. To find a and b, set up a system to be solved.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
Calculate the sum for each pair.
a=-15 b=6
The solution is the pair that gives sum -9.
\left(10h^{2}-15h\right)+\left(6h-9\right)
Rewrite 10h^{2}-9h-9 as \left(10h^{2}-15h\right)+\left(6h-9\right).
5h\left(2h-3\right)+3\left(2h-3\right)
Factor out 5h in the first and 3 in the second group.
\left(2h-3\right)\left(5h+3\right)
Factor out common term 2h-3 by using distributive property.
10h^{2}-9h-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
h=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 10\left(-9\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
h=\frac{-\left(-9\right)±\sqrt{81-4\times 10\left(-9\right)}}{2\times 10}
Square -9.
h=\frac{-\left(-9\right)±\sqrt{81-40\left(-9\right)}}{2\times 10}
Multiply -4 times 10.
h=\frac{-\left(-9\right)±\sqrt{81+360}}{2\times 10}
Multiply -40 times -9.
h=\frac{-\left(-9\right)±\sqrt{441}}{2\times 10}
Add 81 to 360.
h=\frac{-\left(-9\right)±21}{2\times 10}
Take the square root of 441.
h=\frac{9±21}{2\times 10}
The opposite of -9 is 9.
h=\frac{9±21}{20}
Multiply 2 times 10.
h=\frac{30}{20}
Now solve the equation h=\frac{9±21}{20} when ± is plus. Add 9 to 21.
h=\frac{3}{2}
Reduce the fraction \frac{30}{20} to lowest terms by extracting and canceling out 10.
h=-\frac{12}{20}
Now solve the equation h=\frac{9±21}{20} when ± is minus. Subtract 21 from 9.
h=-\frac{3}{5}
Reduce the fraction \frac{-12}{20} to lowest terms by extracting and canceling out 4.
10h^{2}-9h-9=10\left(h-\frac{3}{2}\right)\left(h-\left(-\frac{3}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and -\frac{3}{5} for x_{2}.
10h^{2}-9h-9=10\left(h-\frac{3}{2}\right)\left(h+\frac{3}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
10h^{2}-9h-9=10\times \frac{2h-3}{2}\left(h+\frac{3}{5}\right)
Subtract \frac{3}{2} from h by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10h^{2}-9h-9=10\times \frac{2h-3}{2}\times \frac{5h+3}{5}
Add \frac{3}{5} to h by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10h^{2}-9h-9=10\times \frac{\left(2h-3\right)\left(5h+3\right)}{2\times 5}
Multiply \frac{2h-3}{2} times \frac{5h+3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
10h^{2}-9h-9=10\times \frac{\left(2h-3\right)\left(5h+3\right)}{10}
Multiply 2 times 5.
10h^{2}-9h-9=\left(2h-3\right)\left(5h+3\right)
Cancel out 10, the greatest common factor in 10 and 10.
x ^ 2 -\frac{9}{10}x -\frac{9}{10} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 10
r + s = \frac{9}{10} rs = -\frac{9}{10}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{9}{20} - u s = \frac{9}{20} + u
Two numbers r and s sum up to \frac{9}{10} exactly when the average of the two numbers is \frac{1}{2}*\frac{9}{10} = \frac{9}{20}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{9}{20} - u) (\frac{9}{20} + u) = -\frac{9}{10}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{9}{10}
\frac{81}{400} - u^2 = -\frac{9}{10}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{9}{10}-\frac{81}{400} = -\frac{441}{400}
Simplify the expression by subtracting \frac{81}{400} on both sides
u^2 = \frac{441}{400} u = \pm\sqrt{\frac{441}{400}} = \pm \frac{21}{20}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{9}{20} - \frac{21}{20} = -0.600 s = \frac{9}{20} + \frac{21}{20} = 1.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}