Evaluate
\frac{5g^{21}}{2}
Differentiate w.r.t. g
\frac{105g^{20}}{2}
Share
Copied to clipboard
\frac{10g^{9}\times 3}{12}g^{12}
To multiply powers of the same base, add their exponents. Add 5 and 4 to get 9.
\frac{30g^{9}}{12}g^{12}
Multiply 10 and 3 to get 30.
\frac{5}{2}g^{9}g^{12}
Divide 30g^{9} by 12 to get \frac{5}{2}g^{9}.
\frac{5}{2}g^{21}
To multiply powers of the same base, add their exponents. Add 9 and 12 to get 21.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{10g^{9}\times 3}{12}g^{12})
To multiply powers of the same base, add their exponents. Add 5 and 4 to get 9.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{30g^{9}}{12}g^{12})
Multiply 10 and 3 to get 30.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{5}{2}g^{9}g^{12})
Divide 30g^{9} by 12 to get \frac{5}{2}g^{9}.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{5}{2}g^{21})
To multiply powers of the same base, add their exponents. Add 9 and 12 to get 21.
21\times \frac{5}{2}g^{21-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{105}{2}g^{21-1}
Multiply 21 times \frac{5}{2}.
\frac{105}{2}g^{20}
Subtract 1 from 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}