Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(5b^{2}-9b\right)
Factor out 2.
b\left(5b-9\right)
Consider 5b^{2}-9b. Factor out b.
2b\left(5b-9\right)
Rewrite the complete factored expression.
10b^{2}-18b=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-18\right)±18}{2\times 10}
Take the square root of \left(-18\right)^{2}.
b=\frac{18±18}{2\times 10}
The opposite of -18 is 18.
b=\frac{18±18}{20}
Multiply 2 times 10.
b=\frac{36}{20}
Now solve the equation b=\frac{18±18}{20} when ± is plus. Add 18 to 18.
b=\frac{9}{5}
Reduce the fraction \frac{36}{20} to lowest terms by extracting and canceling out 4.
b=\frac{0}{20}
Now solve the equation b=\frac{18±18}{20} when ± is minus. Subtract 18 from 18.
b=0
Divide 0 by 20.
10b^{2}-18b=10\left(b-\frac{9}{5}\right)b
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{9}{5} for x_{1} and 0 for x_{2}.
10b^{2}-18b=10\times \frac{5b-9}{5}b
Subtract \frac{9}{5} from b by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10b^{2}-18b=2\left(5b-9\right)b
Cancel out 5, the greatest common factor in 10 and 5.