Solve for b
b=\frac{27+\sqrt{6511}i}{20}\approx 1.35+4.034538387i
b=\frac{-\sqrt{6511}i+27}{20}\approx 1.35-4.034538387i
Share
Copied to clipboard
10b^{2}-27b=-181
Subtract 27b from both sides.
10b^{2}-27b+181=0
Add 181 to both sides.
b=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 10\times 181}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -27 for b, and 181 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-27\right)±\sqrt{729-4\times 10\times 181}}{2\times 10}
Square -27.
b=\frac{-\left(-27\right)±\sqrt{729-40\times 181}}{2\times 10}
Multiply -4 times 10.
b=\frac{-\left(-27\right)±\sqrt{729-7240}}{2\times 10}
Multiply -40 times 181.
b=\frac{-\left(-27\right)±\sqrt{-6511}}{2\times 10}
Add 729 to -7240.
b=\frac{-\left(-27\right)±\sqrt{6511}i}{2\times 10}
Take the square root of -6511.
b=\frac{27±\sqrt{6511}i}{2\times 10}
The opposite of -27 is 27.
b=\frac{27±\sqrt{6511}i}{20}
Multiply 2 times 10.
b=\frac{27+\sqrt{6511}i}{20}
Now solve the equation b=\frac{27±\sqrt{6511}i}{20} when ± is plus. Add 27 to i\sqrt{6511}.
b=\frac{-\sqrt{6511}i+27}{20}
Now solve the equation b=\frac{27±\sqrt{6511}i}{20} when ± is minus. Subtract i\sqrt{6511} from 27.
b=\frac{27+\sqrt{6511}i}{20} b=\frac{-\sqrt{6511}i+27}{20}
The equation is now solved.
10b^{2}-27b=-181
Subtract 27b from both sides.
\frac{10b^{2}-27b}{10}=-\frac{181}{10}
Divide both sides by 10.
b^{2}-\frac{27}{10}b=-\frac{181}{10}
Dividing by 10 undoes the multiplication by 10.
b^{2}-\frac{27}{10}b+\left(-\frac{27}{20}\right)^{2}=-\frac{181}{10}+\left(-\frac{27}{20}\right)^{2}
Divide -\frac{27}{10}, the coefficient of the x term, by 2 to get -\frac{27}{20}. Then add the square of -\frac{27}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-\frac{27}{10}b+\frac{729}{400}=-\frac{181}{10}+\frac{729}{400}
Square -\frac{27}{20} by squaring both the numerator and the denominator of the fraction.
b^{2}-\frac{27}{10}b+\frac{729}{400}=-\frac{6511}{400}
Add -\frac{181}{10} to \frac{729}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(b-\frac{27}{20}\right)^{2}=-\frac{6511}{400}
Factor b^{2}-\frac{27}{10}b+\frac{729}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{27}{20}\right)^{2}}=\sqrt{-\frac{6511}{400}}
Take the square root of both sides of the equation.
b-\frac{27}{20}=\frac{\sqrt{6511}i}{20} b-\frac{27}{20}=-\frac{\sqrt{6511}i}{20}
Simplify.
b=\frac{27+\sqrt{6511}i}{20} b=\frac{-\sqrt{6511}i+27}{20}
Add \frac{27}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}