Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

10b^{2}-27b=-181
Subtract 27b from both sides.
10b^{2}-27b+181=0
Add 181 to both sides.
b=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 10\times 181}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -27 for b, and 181 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-27\right)±\sqrt{729-4\times 10\times 181}}{2\times 10}
Square -27.
b=\frac{-\left(-27\right)±\sqrt{729-40\times 181}}{2\times 10}
Multiply -4 times 10.
b=\frac{-\left(-27\right)±\sqrt{729-7240}}{2\times 10}
Multiply -40 times 181.
b=\frac{-\left(-27\right)±\sqrt{-6511}}{2\times 10}
Add 729 to -7240.
b=\frac{-\left(-27\right)±\sqrt{6511}i}{2\times 10}
Take the square root of -6511.
b=\frac{27±\sqrt{6511}i}{2\times 10}
The opposite of -27 is 27.
b=\frac{27±\sqrt{6511}i}{20}
Multiply 2 times 10.
b=\frac{27+\sqrt{6511}i}{20}
Now solve the equation b=\frac{27±\sqrt{6511}i}{20} when ± is plus. Add 27 to i\sqrt{6511}.
b=\frac{-\sqrt{6511}i+27}{20}
Now solve the equation b=\frac{27±\sqrt{6511}i}{20} when ± is minus. Subtract i\sqrt{6511} from 27.
b=\frac{27+\sqrt{6511}i}{20} b=\frac{-\sqrt{6511}i+27}{20}
The equation is now solved.
10b^{2}-27b=-181
Subtract 27b from both sides.
\frac{10b^{2}-27b}{10}=-\frac{181}{10}
Divide both sides by 10.
b^{2}-\frac{27}{10}b=-\frac{181}{10}
Dividing by 10 undoes the multiplication by 10.
b^{2}-\frac{27}{10}b+\left(-\frac{27}{20}\right)^{2}=-\frac{181}{10}+\left(-\frac{27}{20}\right)^{2}
Divide -\frac{27}{10}, the coefficient of the x term, by 2 to get -\frac{27}{20}. Then add the square of -\frac{27}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-\frac{27}{10}b+\frac{729}{400}=-\frac{181}{10}+\frac{729}{400}
Square -\frac{27}{20} by squaring both the numerator and the denominator of the fraction.
b^{2}-\frac{27}{10}b+\frac{729}{400}=-\frac{6511}{400}
Add -\frac{181}{10} to \frac{729}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(b-\frac{27}{20}\right)^{2}=-\frac{6511}{400}
Factor b^{2}-\frac{27}{10}b+\frac{729}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{27}{20}\right)^{2}}=\sqrt{-\frac{6511}{400}}
Take the square root of both sides of the equation.
b-\frac{27}{20}=\frac{\sqrt{6511}i}{20} b-\frac{27}{20}=-\frac{\sqrt{6511}i}{20}
Simplify.
b=\frac{27+\sqrt{6511}i}{20} b=\frac{-\sqrt{6511}i+27}{20}
Add \frac{27}{20} to both sides of the equation.