Skip to main content
Solve for P
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5}{2}P\left(x+1\right)=\frac{1}{5}\left(8-x\right)
Multiply 10 and \frac{1}{4} to get \frac{5}{2}.
\frac{5}{2}Px+\frac{5}{2}P=\frac{1}{5}\left(8-x\right)
Use the distributive property to multiply \frac{5}{2}P by x+1.
\frac{5}{2}Px+\frac{5}{2}P=\frac{8}{5}-\frac{1}{5}x
Use the distributive property to multiply \frac{1}{5} by 8-x.
\left(\frac{5}{2}x+\frac{5}{2}\right)P=\frac{8}{5}-\frac{1}{5}x
Combine all terms containing P.
\frac{5x+5}{2}P=\frac{8-x}{5}
The equation is in standard form.
\frac{2\times \frac{5x+5}{2}P}{5x+5}=\frac{8-x}{5\times \frac{5x+5}{2}}
Divide both sides by \frac{5}{2}x+\frac{5}{2}.
P=\frac{8-x}{5\times \frac{5x+5}{2}}
Dividing by \frac{5}{2}x+\frac{5}{2} undoes the multiplication by \frac{5}{2}x+\frac{5}{2}.
P=\frac{2\left(8-x\right)}{25\left(x+1\right)}
Divide \frac{8-x}{5} by \frac{5}{2}x+\frac{5}{2}.
\frac{5}{2}P\left(x+1\right)=\frac{1}{5}\left(8-x\right)
Multiply 10 and \frac{1}{4} to get \frac{5}{2}.
\frac{5}{2}Px+\frac{5}{2}P=\frac{1}{5}\left(8-x\right)
Use the distributive property to multiply \frac{5}{2}P by x+1.
\frac{5}{2}Px+\frac{5}{2}P=\frac{8}{5}-\frac{1}{5}x
Use the distributive property to multiply \frac{1}{5} by 8-x.
\frac{5}{2}Px+\frac{5}{2}P+\frac{1}{5}x=\frac{8}{5}
Add \frac{1}{5}x to both sides.
\frac{5}{2}Px+\frac{1}{5}x=\frac{8}{5}-\frac{5}{2}P
Subtract \frac{5}{2}P from both sides.
\left(\frac{5}{2}P+\frac{1}{5}\right)x=\frac{8}{5}-\frac{5}{2}P
Combine all terms containing x.
\left(\frac{5P}{2}+\frac{1}{5}\right)x=-\frac{5P}{2}+\frac{8}{5}
The equation is in standard form.
\frac{\left(\frac{5P}{2}+\frac{1}{5}\right)x}{\frac{5P}{2}+\frac{1}{5}}=\frac{-\frac{5P}{2}+\frac{8}{5}}{\frac{5P}{2}+\frac{1}{5}}
Divide both sides by \frac{5}{2}P+\frac{1}{5}.
x=\frac{-\frac{5P}{2}+\frac{8}{5}}{\frac{5P}{2}+\frac{1}{5}}
Dividing by \frac{5}{2}P+\frac{1}{5} undoes the multiplication by \frac{5}{2}P+\frac{1}{5}.
x=\frac{16-25P}{25P+2}
Divide \frac{8}{5}-\frac{5P}{2} by \frac{5}{2}P+\frac{1}{5}.