Skip to main content
Solve for t (complex solution)
Tick mark Image
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

17-t^{2}=4t
Add 10 and 7 to get 17.
17-t^{2}-4t=0
Subtract 4t from both sides.
-t^{2}-4t+17=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 17}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and 17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 17}}{2\left(-1\right)}
Square -4.
t=\frac{-\left(-4\right)±\sqrt{16+4\times 17}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-\left(-4\right)±\sqrt{16+68}}{2\left(-1\right)}
Multiply 4 times 17.
t=\frac{-\left(-4\right)±\sqrt{84}}{2\left(-1\right)}
Add 16 to 68.
t=\frac{-\left(-4\right)±2\sqrt{21}}{2\left(-1\right)}
Take the square root of 84.
t=\frac{4±2\sqrt{21}}{2\left(-1\right)}
The opposite of -4 is 4.
t=\frac{4±2\sqrt{21}}{-2}
Multiply 2 times -1.
t=\frac{2\sqrt{21}+4}{-2}
Now solve the equation t=\frac{4±2\sqrt{21}}{-2} when ± is plus. Add 4 to 2\sqrt{21}.
t=-\left(\sqrt{21}+2\right)
Divide 4+2\sqrt{21} by -2.
t=\frac{4-2\sqrt{21}}{-2}
Now solve the equation t=\frac{4±2\sqrt{21}}{-2} when ± is minus. Subtract 2\sqrt{21} from 4.
t=\sqrt{21}-2
Divide 4-2\sqrt{21} by -2.
t=-\left(\sqrt{21}+2\right) t=\sqrt{21}-2
The equation is now solved.
17-t^{2}=4t
Add 10 and 7 to get 17.
17-t^{2}-4t=0
Subtract 4t from both sides.
-t^{2}-4t=-17
Subtract 17 from both sides. Anything subtracted from zero gives its negation.
\frac{-t^{2}-4t}{-1}=-\frac{17}{-1}
Divide both sides by -1.
t^{2}+\left(-\frac{4}{-1}\right)t=-\frac{17}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}+4t=-\frac{17}{-1}
Divide -4 by -1.
t^{2}+4t=17
Divide -17 by -1.
t^{2}+4t+2^{2}=17+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+4t+4=17+4
Square 2.
t^{2}+4t+4=21
Add 17 to 4.
\left(t+2\right)^{2}=21
Factor t^{2}+4t+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+2\right)^{2}}=\sqrt{21}
Take the square root of both sides of the equation.
t+2=\sqrt{21} t+2=-\sqrt{21}
Simplify.
t=\sqrt{21}-2 t=-\sqrt{21}-2
Subtract 2 from both sides of the equation.
17-t^{2}=4t
Add 10 and 7 to get 17.
17-t^{2}-4t=0
Subtract 4t from both sides.
-t^{2}-4t+17=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 17}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and 17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 17}}{2\left(-1\right)}
Square -4.
t=\frac{-\left(-4\right)±\sqrt{16+4\times 17}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-\left(-4\right)±\sqrt{16+68}}{2\left(-1\right)}
Multiply 4 times 17.
t=\frac{-\left(-4\right)±\sqrt{84}}{2\left(-1\right)}
Add 16 to 68.
t=\frac{-\left(-4\right)±2\sqrt{21}}{2\left(-1\right)}
Take the square root of 84.
t=\frac{4±2\sqrt{21}}{2\left(-1\right)}
The opposite of -4 is 4.
t=\frac{4±2\sqrt{21}}{-2}
Multiply 2 times -1.
t=\frac{2\sqrt{21}+4}{-2}
Now solve the equation t=\frac{4±2\sqrt{21}}{-2} when ± is plus. Add 4 to 2\sqrt{21}.
t=-\left(\sqrt{21}+2\right)
Divide 4+2\sqrt{21} by -2.
t=\frac{4-2\sqrt{21}}{-2}
Now solve the equation t=\frac{4±2\sqrt{21}}{-2} when ± is minus. Subtract 2\sqrt{21} from 4.
t=\sqrt{21}-2
Divide 4-2\sqrt{21} by -2.
t=-\left(\sqrt{21}+2\right) t=\sqrt{21}-2
The equation is now solved.
17-t^{2}=4t
Add 10 and 7 to get 17.
17-t^{2}-4t=0
Subtract 4t from both sides.
-t^{2}-4t=-17
Subtract 17 from both sides. Anything subtracted from zero gives its negation.
\frac{-t^{2}-4t}{-1}=-\frac{17}{-1}
Divide both sides by -1.
t^{2}+\left(-\frac{4}{-1}\right)t=-\frac{17}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}+4t=-\frac{17}{-1}
Divide -4 by -1.
t^{2}+4t=17
Divide -17 by -1.
t^{2}+4t+2^{2}=17+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+4t+4=17+4
Square 2.
t^{2}+4t+4=21
Add 17 to 4.
\left(t+2\right)^{2}=21
Factor t^{2}+4t+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+2\right)^{2}}=\sqrt{21}
Take the square root of both sides of the equation.
t+2=\sqrt{21} t+2=-\sqrt{21}
Simplify.
t=\sqrt{21}-2 t=-\sqrt{21}-2
Subtract 2 from both sides of the equation.