Skip to main content
Solve for w
Tick mark Image

Similar Problems from Web Search

Share

10-3w-8w^{2}>0
Subtract 8w^{2} from both sides.
-10+3w+8w^{2}<0
Multiply the inequality by -1 to make the coefficient of the highest power in 10-3w-8w^{2} positive. Since -1 is negative, the inequality direction is changed.
-10+3w+8w^{2}=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
w=\frac{-3±\sqrt{3^{2}-4\times 8\left(-10\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 8 for a, 3 for b, and -10 for c in the quadratic formula.
w=\frac{-3±\sqrt{329}}{16}
Do the calculations.
w=\frac{\sqrt{329}-3}{16} w=\frac{-\sqrt{329}-3}{16}
Solve the equation w=\frac{-3±\sqrt{329}}{16} when ± is plus and when ± is minus.
8\left(w-\frac{\sqrt{329}-3}{16}\right)\left(w-\frac{-\sqrt{329}-3}{16}\right)<0
Rewrite the inequality by using the obtained solutions.
w-\frac{\sqrt{329}-3}{16}>0 w-\frac{-\sqrt{329}-3}{16}<0
For the product to be negative, w-\frac{\sqrt{329}-3}{16} and w-\frac{-\sqrt{329}-3}{16} have to be of the opposite signs. Consider the case when w-\frac{\sqrt{329}-3}{16} is positive and w-\frac{-\sqrt{329}-3}{16} is negative.
w\in \emptyset
This is false for any w.
w-\frac{-\sqrt{329}-3}{16}>0 w-\frac{\sqrt{329}-3}{16}<0
Consider the case when w-\frac{-\sqrt{329}-3}{16} is positive and w-\frac{\sqrt{329}-3}{16} is negative.
w\in \left(\frac{-\sqrt{329}-3}{16},\frac{\sqrt{329}-3}{16}\right)
The solution satisfying both inequalities is w\in \left(\frac{-\sqrt{329}-3}{16},\frac{\sqrt{329}-3}{16}\right).
w\in \left(\frac{-\sqrt{329}-3}{16},\frac{\sqrt{329}-3}{16}\right)
The final solution is the union of the obtained solutions.