Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6x^{2}-11x+10
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-11 ab=-6\times 10=-60
Factor the expression by grouping. First, the expression needs to be rewritten as -6x^{2}+ax+bx+10. To find a and b, set up a system to be solved.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Calculate the sum for each pair.
a=4 b=-15
The solution is the pair that gives sum -11.
\left(-6x^{2}+4x\right)+\left(-15x+10\right)
Rewrite -6x^{2}-11x+10 as \left(-6x^{2}+4x\right)+\left(-15x+10\right).
2x\left(-3x+2\right)+5\left(-3x+2\right)
Factor out 2x in the first and 5 in the second group.
\left(-3x+2\right)\left(2x+5\right)
Factor out common term -3x+2 by using distributive property.
-6x^{2}-11x+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-6\right)\times 10}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-6\right)\times 10}}{2\left(-6\right)}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+24\times 10}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-\left(-11\right)±\sqrt{121+240}}{2\left(-6\right)}
Multiply 24 times 10.
x=\frac{-\left(-11\right)±\sqrt{361}}{2\left(-6\right)}
Add 121 to 240.
x=\frac{-\left(-11\right)±19}{2\left(-6\right)}
Take the square root of 361.
x=\frac{11±19}{2\left(-6\right)}
The opposite of -11 is 11.
x=\frac{11±19}{-12}
Multiply 2 times -6.
x=\frac{30}{-12}
Now solve the equation x=\frac{11±19}{-12} when ± is plus. Add 11 to 19.
x=-\frac{5}{2}
Reduce the fraction \frac{30}{-12} to lowest terms by extracting and canceling out 6.
x=-\frac{8}{-12}
Now solve the equation x=\frac{11±19}{-12} when ± is minus. Subtract 19 from 11.
x=\frac{2}{3}
Reduce the fraction \frac{-8}{-12} to lowest terms by extracting and canceling out 4.
-6x^{2}-11x+10=-6\left(x-\left(-\frac{5}{2}\right)\right)\left(x-\frac{2}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{2} for x_{1} and \frac{2}{3} for x_{2}.
-6x^{2}-11x+10=-6\left(x+\frac{5}{2}\right)\left(x-\frac{2}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-6x^{2}-11x+10=-6\times \frac{-2x-5}{-2}\left(x-\frac{2}{3}\right)
Add \frac{5}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-6x^{2}-11x+10=-6\times \frac{-2x-5}{-2}\times \frac{-3x+2}{-3}
Subtract \frac{2}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-6x^{2}-11x+10=-6\times \frac{\left(-2x-5\right)\left(-3x+2\right)}{-2\left(-3\right)}
Multiply \frac{-2x-5}{-2} times \frac{-3x+2}{-3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-6x^{2}-11x+10=-6\times \frac{\left(-2x-5\right)\left(-3x+2\right)}{6}
Multiply -2 times -3.
-6x^{2}-11x+10=-\left(-2x-5\right)\left(-3x+2\right)
Cancel out 6, the greatest common factor in -6 and 6.