Evaluate
150a-45b+10
Expand
150a-45b+10
Share
Copied to clipboard
10-\left(10b-150a-\left(-35b\right)\right)
To find the opposite of 150a-35b, find the opposite of each term.
10-\left(10b-150a+35b\right)
The opposite of -35b is 35b.
10-\left(45b-150a\right)
Combine 10b and 35b to get 45b.
10-45b-\left(-150a\right)
To find the opposite of 45b-150a, find the opposite of each term.
10-45b+150a
The opposite of -150a is 150a.
10-\left(10b-150a-\left(-35b\right)\right)
To find the opposite of 150a-35b, find the opposite of each term.
10-\left(10b-150a+35b\right)
The opposite of -35b is 35b.
10-\left(45b-150a\right)
Combine 10b and 35b to get 45b.
10-45b-\left(-150a\right)
To find the opposite of 45b-150a, find the opposite of each term.
10-45b+150a
The opposite of -150a is 150a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}