Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}-40x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 10}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -40 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 10}}{2\times 10}
Square -40.
x=\frac{-\left(-40\right)±\sqrt{1600-40}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-40\right)±\sqrt{1560}}{2\times 10}
Add 1600 to -40.
x=\frac{-\left(-40\right)±2\sqrt{390}}{2\times 10}
Take the square root of 1560.
x=\frac{40±2\sqrt{390}}{2\times 10}
The opposite of -40 is 40.
x=\frac{40±2\sqrt{390}}{20}
Multiply 2 times 10.
x=\frac{2\sqrt{390}+40}{20}
Now solve the equation x=\frac{40±2\sqrt{390}}{20} when ± is plus. Add 40 to 2\sqrt{390}.
x=\frac{\sqrt{390}}{10}+2
Divide 40+2\sqrt{390} by 20.
x=\frac{40-2\sqrt{390}}{20}
Now solve the equation x=\frac{40±2\sqrt{390}}{20} when ± is minus. Subtract 2\sqrt{390} from 40.
x=-\frac{\sqrt{390}}{10}+2
Divide 40-2\sqrt{390} by 20.
x=\frac{\sqrt{390}}{10}+2 x=-\frac{\sqrt{390}}{10}+2
The equation is now solved.
10x^{2}-40x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
10x^{2}-40x+1-1=-1
Subtract 1 from both sides of the equation.
10x^{2}-40x=-1
Subtracting 1 from itself leaves 0.
\frac{10x^{2}-40x}{10}=-\frac{1}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{40}{10}\right)x=-\frac{1}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-4x=-\frac{1}{10}
Divide -40 by 10.
x^{2}-4x+\left(-2\right)^{2}=-\frac{1}{10}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{1}{10}+4
Square -2.
x^{2}-4x+4=\frac{39}{10}
Add -\frac{1}{10} to 4.
\left(x-2\right)^{2}=\frac{39}{10}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{39}{10}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{390}}{10} x-2=-\frac{\sqrt{390}}{10}
Simplify.
x=\frac{\sqrt{390}}{10}+2 x=-\frac{\sqrt{390}}{10}+2
Add 2 to both sides of the equation.