Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-3 ab=10\left(-27\right)=-270
Factor the expression by grouping. First, the expression needs to be rewritten as 10x^{2}+ax+bx-27. To find a and b, set up a system to be solved.
1,-270 2,-135 3,-90 5,-54 6,-45 9,-30 10,-27 15,-18
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -270.
1-270=-269 2-135=-133 3-90=-87 5-54=-49 6-45=-39 9-30=-21 10-27=-17 15-18=-3
Calculate the sum for each pair.
a=-18 b=15
The solution is the pair that gives sum -3.
\left(10x^{2}-18x\right)+\left(15x-27\right)
Rewrite 10x^{2}-3x-27 as \left(10x^{2}-18x\right)+\left(15x-27\right).
2x\left(5x-9\right)+3\left(5x-9\right)
Factor out 2x in the first and 3 in the second group.
\left(5x-9\right)\left(2x+3\right)
Factor out common term 5x-9 by using distributive property.
10x^{2}-3x-27=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 10\left(-27\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 10\left(-27\right)}}{2\times 10}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-40\left(-27\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-3\right)±\sqrt{9+1080}}{2\times 10}
Multiply -40 times -27.
x=\frac{-\left(-3\right)±\sqrt{1089}}{2\times 10}
Add 9 to 1080.
x=\frac{-\left(-3\right)±33}{2\times 10}
Take the square root of 1089.
x=\frac{3±33}{2\times 10}
The opposite of -3 is 3.
x=\frac{3±33}{20}
Multiply 2 times 10.
x=\frac{36}{20}
Now solve the equation x=\frac{3±33}{20} when ± is plus. Add 3 to 33.
x=\frac{9}{5}
Reduce the fraction \frac{36}{20} to lowest terms by extracting and canceling out 4.
x=-\frac{30}{20}
Now solve the equation x=\frac{3±33}{20} when ± is minus. Subtract 33 from 3.
x=-\frac{3}{2}
Reduce the fraction \frac{-30}{20} to lowest terms by extracting and canceling out 10.
10x^{2}-3x-27=10\left(x-\frac{9}{5}\right)\left(x-\left(-\frac{3}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{9}{5} for x_{1} and -\frac{3}{2} for x_{2}.
10x^{2}-3x-27=10\left(x-\frac{9}{5}\right)\left(x+\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
10x^{2}-3x-27=10\times \frac{5x-9}{5}\left(x+\frac{3}{2}\right)
Subtract \frac{9}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-3x-27=10\times \frac{5x-9}{5}\times \frac{2x+3}{2}
Add \frac{3}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}-3x-27=10\times \frac{\left(5x-9\right)\left(2x+3\right)}{5\times 2}
Multiply \frac{5x-9}{5} times \frac{2x+3}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
10x^{2}-3x-27=10\times \frac{\left(5x-9\right)\left(2x+3\right)}{10}
Multiply 5 times 2.
10x^{2}-3x-27=\left(5x-9\right)\left(2x+3\right)
Cancel out 10, the greatest common factor in 10 and 10.