Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}-36x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 10\times 16}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -36 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 10\times 16}}{2\times 10}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-40\times 16}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-36\right)±\sqrt{1296-640}}{2\times 10}
Multiply -40 times 16.
x=\frac{-\left(-36\right)±\sqrt{656}}{2\times 10}
Add 1296 to -640.
x=\frac{-\left(-36\right)±4\sqrt{41}}{2\times 10}
Take the square root of 656.
x=\frac{36±4\sqrt{41}}{2\times 10}
The opposite of -36 is 36.
x=\frac{36±4\sqrt{41}}{20}
Multiply 2 times 10.
x=\frac{4\sqrt{41}+36}{20}
Now solve the equation x=\frac{36±4\sqrt{41}}{20} when ± is plus. Add 36 to 4\sqrt{41}.
x=\frac{\sqrt{41}+9}{5}
Divide 36+4\sqrt{41} by 20.
x=\frac{36-4\sqrt{41}}{20}
Now solve the equation x=\frac{36±4\sqrt{41}}{20} when ± is minus. Subtract 4\sqrt{41} from 36.
x=\frac{9-\sqrt{41}}{5}
Divide 36-4\sqrt{41} by 20.
x=\frac{\sqrt{41}+9}{5} x=\frac{9-\sqrt{41}}{5}
The equation is now solved.
10x^{2}-36x+16=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
10x^{2}-36x+16-16=-16
Subtract 16 from both sides of the equation.
10x^{2}-36x=-16
Subtracting 16 from itself leaves 0.
\frac{10x^{2}-36x}{10}=-\frac{16}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{36}{10}\right)x=-\frac{16}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{18}{5}x=-\frac{16}{10}
Reduce the fraction \frac{-36}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{18}{5}x=-\frac{8}{5}
Reduce the fraction \frac{-16}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{18}{5}x+\left(-\frac{9}{5}\right)^{2}=-\frac{8}{5}+\left(-\frac{9}{5}\right)^{2}
Divide -\frac{18}{5}, the coefficient of the x term, by 2 to get -\frac{9}{5}. Then add the square of -\frac{9}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{18}{5}x+\frac{81}{25}=-\frac{8}{5}+\frac{81}{25}
Square -\frac{9}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{18}{5}x+\frac{81}{25}=\frac{41}{25}
Add -\frac{8}{5} to \frac{81}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{5}\right)^{2}=\frac{41}{25}
Factor x^{2}-\frac{18}{5}x+\frac{81}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{5}\right)^{2}}=\sqrt{\frac{41}{25}}
Take the square root of both sides of the equation.
x-\frac{9}{5}=\frac{\sqrt{41}}{5} x-\frac{9}{5}=-\frac{\sqrt{41}}{5}
Simplify.
x=\frac{\sqrt{41}+9}{5} x=\frac{9-\sqrt{41}}{5}
Add \frac{9}{5} to both sides of the equation.