Solve for x
x = \frac{3 \sqrt{19} + 9}{5} \approx 4.415339366
x=\frac{9-3\sqrt{19}}{5}\approx -0.815339366
Graph
Share
Copied to clipboard
10x^{2}-36x=36
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
10x^{2}-36x-36=36-36
Subtract 36 from both sides of the equation.
10x^{2}-36x-36=0
Subtracting 36 from itself leaves 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 10\left(-36\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -36 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 10\left(-36\right)}}{2\times 10}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-40\left(-36\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-36\right)±\sqrt{1296+1440}}{2\times 10}
Multiply -40 times -36.
x=\frac{-\left(-36\right)±\sqrt{2736}}{2\times 10}
Add 1296 to 1440.
x=\frac{-\left(-36\right)±12\sqrt{19}}{2\times 10}
Take the square root of 2736.
x=\frac{36±12\sqrt{19}}{2\times 10}
The opposite of -36 is 36.
x=\frac{36±12\sqrt{19}}{20}
Multiply 2 times 10.
x=\frac{12\sqrt{19}+36}{20}
Now solve the equation x=\frac{36±12\sqrt{19}}{20} when ± is plus. Add 36 to 12\sqrt{19}.
x=\frac{3\sqrt{19}+9}{5}
Divide 36+12\sqrt{19} by 20.
x=\frac{36-12\sqrt{19}}{20}
Now solve the equation x=\frac{36±12\sqrt{19}}{20} when ± is minus. Subtract 12\sqrt{19} from 36.
x=\frac{9-3\sqrt{19}}{5}
Divide 36-12\sqrt{19} by 20.
x=\frac{3\sqrt{19}+9}{5} x=\frac{9-3\sqrt{19}}{5}
The equation is now solved.
10x^{2}-36x=36
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10x^{2}-36x}{10}=\frac{36}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{36}{10}\right)x=\frac{36}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{18}{5}x=\frac{36}{10}
Reduce the fraction \frac{-36}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{18}{5}x=\frac{18}{5}
Reduce the fraction \frac{36}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{18}{5}x+\left(-\frac{9}{5}\right)^{2}=\frac{18}{5}+\left(-\frac{9}{5}\right)^{2}
Divide -\frac{18}{5}, the coefficient of the x term, by 2 to get -\frac{9}{5}. Then add the square of -\frac{9}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{18}{5}x+\frac{81}{25}=\frac{18}{5}+\frac{81}{25}
Square -\frac{9}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{18}{5}x+\frac{81}{25}=\frac{171}{25}
Add \frac{18}{5} to \frac{81}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{5}\right)^{2}=\frac{171}{25}
Factor x^{2}-\frac{18}{5}x+\frac{81}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{5}\right)^{2}}=\sqrt{\frac{171}{25}}
Take the square root of both sides of the equation.
x-\frac{9}{5}=\frac{3\sqrt{19}}{5} x-\frac{9}{5}=-\frac{3\sqrt{19}}{5}
Simplify.
x=\frac{3\sqrt{19}+9}{5} x=\frac{9-3\sqrt{19}}{5}
Add \frac{9}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}