Solve for x
x = \frac{9}{5} = 1\frac{4}{5} = 1.8
x=0
Graph
Share
Copied to clipboard
10x^{2}-18x=0
Anything plus zero gives itself.
x\left(10x-18\right)=0
Factor out x.
x=0 x=\frac{9}{5}
To find equation solutions, solve x=0 and 10x-18=0.
10x^{2}-18x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -18 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±18}{2\times 10}
Take the square root of \left(-18\right)^{2}.
x=\frac{18±18}{2\times 10}
The opposite of -18 is 18.
x=\frac{18±18}{20}
Multiply 2 times 10.
x=\frac{36}{20}
Now solve the equation x=\frac{18±18}{20} when ± is plus. Add 18 to 18.
x=\frac{9}{5}
Reduce the fraction \frac{36}{20} to lowest terms by extracting and canceling out 4.
x=\frac{0}{20}
Now solve the equation x=\frac{18±18}{20} when ± is minus. Subtract 18 from 18.
x=0
Divide 0 by 20.
x=\frac{9}{5} x=0
The equation is now solved.
10x^{2}-18x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10x^{2}-18x}{10}=\frac{0}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{18}{10}\right)x=\frac{0}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{9}{5}x=\frac{0}{10}
Reduce the fraction \frac{-18}{10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{9}{5}x=0
Divide 0 by 10.
x^{2}-\frac{9}{5}x+\left(-\frac{9}{10}\right)^{2}=\left(-\frac{9}{10}\right)^{2}
Divide -\frac{9}{5}, the coefficient of the x term, by 2 to get -\frac{9}{10}. Then add the square of -\frac{9}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{5}x+\frac{81}{100}=\frac{81}{100}
Square -\frac{9}{10} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{9}{10}\right)^{2}=\frac{81}{100}
Factor x^{2}-\frac{9}{5}x+\frac{81}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{10}\right)^{2}}=\sqrt{\frac{81}{100}}
Take the square root of both sides of the equation.
x-\frac{9}{10}=\frac{9}{10} x-\frac{9}{10}=-\frac{9}{10}
Simplify.
x=\frac{9}{5} x=0
Add \frac{9}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}