Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

10\left(x^{2}-10x+2000\right)
Factor out 10. Polynomial x^{2}-10x+2000 is not factored since it does not have any rational roots.
10x^{2}-100x+20000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 10\times 20000}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-100\right)±\sqrt{10000-4\times 10\times 20000}}{2\times 10}
Square -100.
x=\frac{-\left(-100\right)±\sqrt{10000-40\times 20000}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-100\right)±\sqrt{10000-800000}}{2\times 10}
Multiply -40 times 20000.
x=\frac{-\left(-100\right)±\sqrt{-790000}}{2\times 10}
Add 10000 to -800000.
10x^{2}-100x+20000
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.