Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}+x-10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times 10\left(-10\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 1 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 10\left(-10\right)}}{2\times 10}
Square 1.
x=\frac{-1±\sqrt{1-40\left(-10\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-1±\sqrt{1+400}}{2\times 10}
Multiply -40 times -10.
x=\frac{-1±\sqrt{401}}{2\times 10}
Add 1 to 400.
x=\frac{-1±\sqrt{401}}{20}
Multiply 2 times 10.
x=\frac{\sqrt{401}-1}{20}
Now solve the equation x=\frac{-1±\sqrt{401}}{20} when ± is plus. Add -1 to \sqrt{401}.
x=\frac{-\sqrt{401}-1}{20}
Now solve the equation x=\frac{-1±\sqrt{401}}{20} when ± is minus. Subtract \sqrt{401} from -1.
x=\frac{\sqrt{401}-1}{20} x=\frac{-\sqrt{401}-1}{20}
The equation is now solved.
10x^{2}+x-10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
10x^{2}+x-10-\left(-10\right)=-\left(-10\right)
Add 10 to both sides of the equation.
10x^{2}+x=-\left(-10\right)
Subtracting -10 from itself leaves 0.
10x^{2}+x=10
Subtract -10 from 0.
\frac{10x^{2}+x}{10}=\frac{10}{10}
Divide both sides by 10.
x^{2}+\frac{1}{10}x=\frac{10}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}+\frac{1}{10}x=1
Divide 10 by 10.
x^{2}+\frac{1}{10}x+\left(\frac{1}{20}\right)^{2}=1+\left(\frac{1}{20}\right)^{2}
Divide \frac{1}{10}, the coefficient of the x term, by 2 to get \frac{1}{20}. Then add the square of \frac{1}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{10}x+\frac{1}{400}=1+\frac{1}{400}
Square \frac{1}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{10}x+\frac{1}{400}=\frac{401}{400}
Add 1 to \frac{1}{400}.
\left(x+\frac{1}{20}\right)^{2}=\frac{401}{400}
Factor x^{2}+\frac{1}{10}x+\frac{1}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{20}\right)^{2}}=\sqrt{\frac{401}{400}}
Take the square root of both sides of the equation.
x+\frac{1}{20}=\frac{\sqrt{401}}{20} x+\frac{1}{20}=-\frac{\sqrt{401}}{20}
Simplify.
x=\frac{\sqrt{401}-1}{20} x=\frac{-\sqrt{401}-1}{20}
Subtract \frac{1}{20} from both sides of the equation.