Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}+45x+14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-45±\sqrt{45^{2}-4\times 10\times 14}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-45±\sqrt{2025-4\times 10\times 14}}{2\times 10}
Square 45.
x=\frac{-45±\sqrt{2025-40\times 14}}{2\times 10}
Multiply -4 times 10.
x=\frac{-45±\sqrt{2025-560}}{2\times 10}
Multiply -40 times 14.
x=\frac{-45±\sqrt{1465}}{2\times 10}
Add 2025 to -560.
x=\frac{-45±\sqrt{1465}}{20}
Multiply 2 times 10.
x=\frac{\sqrt{1465}-45}{20}
Now solve the equation x=\frac{-45±\sqrt{1465}}{20} when ± is plus. Add -45 to \sqrt{1465}.
x=\frac{\sqrt{1465}}{20}-\frac{9}{4}
Divide -45+\sqrt{1465} by 20.
x=\frac{-\sqrt{1465}-45}{20}
Now solve the equation x=\frac{-45±\sqrt{1465}}{20} when ± is minus. Subtract \sqrt{1465} from -45.
x=-\frac{\sqrt{1465}}{20}-\frac{9}{4}
Divide -45-\sqrt{1465} by 20.
10x^{2}+45x+14=10\left(x-\left(\frac{\sqrt{1465}}{20}-\frac{9}{4}\right)\right)\left(x-\left(-\frac{\sqrt{1465}}{20}-\frac{9}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{9}{4}+\frac{\sqrt{1465}}{20} for x_{1} and -\frac{9}{4}-\frac{\sqrt{1465}}{20} for x_{2}.