Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=43 ab=10\left(-9\right)=-90
Factor the expression by grouping. First, the expression needs to be rewritten as 10x^{2}+ax+bx-9. To find a and b, set up a system to be solved.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -90.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
Calculate the sum for each pair.
a=-2 b=45
The solution is the pair that gives sum 43.
\left(10x^{2}-2x\right)+\left(45x-9\right)
Rewrite 10x^{2}+43x-9 as \left(10x^{2}-2x\right)+\left(45x-9\right).
2x\left(5x-1\right)+9\left(5x-1\right)
Factor out 2x in the first and 9 in the second group.
\left(5x-1\right)\left(2x+9\right)
Factor out common term 5x-1 by using distributive property.
10x^{2}+43x-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-43±\sqrt{43^{2}-4\times 10\left(-9\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-43±\sqrt{1849-4\times 10\left(-9\right)}}{2\times 10}
Square 43.
x=\frac{-43±\sqrt{1849-40\left(-9\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-43±\sqrt{1849+360}}{2\times 10}
Multiply -40 times -9.
x=\frac{-43±\sqrt{2209}}{2\times 10}
Add 1849 to 360.
x=\frac{-43±47}{2\times 10}
Take the square root of 2209.
x=\frac{-43±47}{20}
Multiply 2 times 10.
x=\frac{4}{20}
Now solve the equation x=\frac{-43±47}{20} when ± is plus. Add -43 to 47.
x=\frac{1}{5}
Reduce the fraction \frac{4}{20} to lowest terms by extracting and canceling out 4.
x=-\frac{90}{20}
Now solve the equation x=\frac{-43±47}{20} when ± is minus. Subtract 47 from -43.
x=-\frac{9}{2}
Reduce the fraction \frac{-90}{20} to lowest terms by extracting and canceling out 10.
10x^{2}+43x-9=10\left(x-\frac{1}{5}\right)\left(x-\left(-\frac{9}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{5} for x_{1} and -\frac{9}{2} for x_{2}.
10x^{2}+43x-9=10\left(x-\frac{1}{5}\right)\left(x+\frac{9}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
10x^{2}+43x-9=10\times \frac{5x-1}{5}\left(x+\frac{9}{2}\right)
Subtract \frac{1}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}+43x-9=10\times \frac{5x-1}{5}\times \frac{2x+9}{2}
Add \frac{9}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}+43x-9=10\times \frac{\left(5x-1\right)\left(2x+9\right)}{5\times 2}
Multiply \frac{5x-1}{5} times \frac{2x+9}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
10x^{2}+43x-9=10\times \frac{\left(5x-1\right)\left(2x+9\right)}{10}
Multiply 5 times 2.
10x^{2}+43x-9=\left(5x-1\right)\left(2x+9\right)
Cancel out 10, the greatest common factor in 10 and 10.