Factor
\left(5x-1\right)\left(2x+1\right)
Evaluate
\left(5x-1\right)\left(2x+1\right)
Graph
Share
Copied to clipboard
a+b=3 ab=10\left(-1\right)=-10
Factor the expression by grouping. First, the expression needs to be rewritten as 10x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
-1,10 -2,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -10.
-1+10=9 -2+5=3
Calculate the sum for each pair.
a=-2 b=5
The solution is the pair that gives sum 3.
\left(10x^{2}-2x\right)+\left(5x-1\right)
Rewrite 10x^{2}+3x-1 as \left(10x^{2}-2x\right)+\left(5x-1\right).
2x\left(5x-1\right)+5x-1
Factor out 2x in 10x^{2}-2x.
\left(5x-1\right)\left(2x+1\right)
Factor out common term 5x-1 by using distributive property.
10x^{2}+3x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 10\left(-1\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{9-4\times 10\left(-1\right)}}{2\times 10}
Square 3.
x=\frac{-3±\sqrt{9-40\left(-1\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-3±\sqrt{9+40}}{2\times 10}
Multiply -40 times -1.
x=\frac{-3±\sqrt{49}}{2\times 10}
Add 9 to 40.
x=\frac{-3±7}{2\times 10}
Take the square root of 49.
x=\frac{-3±7}{20}
Multiply 2 times 10.
x=\frac{4}{20}
Now solve the equation x=\frac{-3±7}{20} when ± is plus. Add -3 to 7.
x=\frac{1}{5}
Reduce the fraction \frac{4}{20} to lowest terms by extracting and canceling out 4.
x=-\frac{10}{20}
Now solve the equation x=\frac{-3±7}{20} when ± is minus. Subtract 7 from -3.
x=-\frac{1}{2}
Reduce the fraction \frac{-10}{20} to lowest terms by extracting and canceling out 10.
10x^{2}+3x-1=10\left(x-\frac{1}{5}\right)\left(x-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{5} for x_{1} and -\frac{1}{2} for x_{2}.
10x^{2}+3x-1=10\left(x-\frac{1}{5}\right)\left(x+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
10x^{2}+3x-1=10\times \frac{5x-1}{5}\left(x+\frac{1}{2}\right)
Subtract \frac{1}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}+3x-1=10\times \frac{5x-1}{5}\times \frac{2x+1}{2}
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
10x^{2}+3x-1=10\times \frac{\left(5x-1\right)\left(2x+1\right)}{5\times 2}
Multiply \frac{5x-1}{5} times \frac{2x+1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
10x^{2}+3x-1=10\times \frac{\left(5x-1\right)\left(2x+1\right)}{10}
Multiply 5 times 2.
10x^{2}+3x-1=\left(5x-1\right)\left(2x+1\right)
Cancel out 10, the greatest common factor in 10 and 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}