Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}+30x-8000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-30±\sqrt{30^{2}-4\times 10\left(-8000\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{900-4\times 10\left(-8000\right)}}{2\times 10}
Square 30.
x=\frac{-30±\sqrt{900-40\left(-8000\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-30±\sqrt{900+320000}}{2\times 10}
Multiply -40 times -8000.
x=\frac{-30±\sqrt{320900}}{2\times 10}
Add 900 to 320000.
x=\frac{-30±10\sqrt{3209}}{2\times 10}
Take the square root of 320900.
x=\frac{-30±10\sqrt{3209}}{20}
Multiply 2 times 10.
x=\frac{10\sqrt{3209}-30}{20}
Now solve the equation x=\frac{-30±10\sqrt{3209}}{20} when ± is plus. Add -30 to 10\sqrt{3209}.
x=\frac{\sqrt{3209}-3}{2}
Divide -30+10\sqrt{3209} by 20.
x=\frac{-10\sqrt{3209}-30}{20}
Now solve the equation x=\frac{-30±10\sqrt{3209}}{20} when ± is minus. Subtract 10\sqrt{3209} from -30.
x=\frac{-\sqrt{3209}-3}{2}
Divide -30-10\sqrt{3209} by 20.
10x^{2}+30x-8000=10\left(x-\frac{\sqrt{3209}-3}{2}\right)\left(x-\frac{-\sqrt{3209}-3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+\sqrt{3209}}{2} for x_{1} and \frac{-3-\sqrt{3209}}{2} for x_{2}.