Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}+10x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\times 10\left(-3\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 10 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 10\left(-3\right)}}{2\times 10}
Square 10.
x=\frac{-10±\sqrt{100-40\left(-3\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-10±\sqrt{100+120}}{2\times 10}
Multiply -40 times -3.
x=\frac{-10±\sqrt{220}}{2\times 10}
Add 100 to 120.
x=\frac{-10±2\sqrt{55}}{2\times 10}
Take the square root of 220.
x=\frac{-10±2\sqrt{55}}{20}
Multiply 2 times 10.
x=\frac{2\sqrt{55}-10}{20}
Now solve the equation x=\frac{-10±2\sqrt{55}}{20} when ± is plus. Add -10 to 2\sqrt{55}.
x=\frac{\sqrt{55}}{10}-\frac{1}{2}
Divide -10+2\sqrt{55} by 20.
x=\frac{-2\sqrt{55}-10}{20}
Now solve the equation x=\frac{-10±2\sqrt{55}}{20} when ± is minus. Subtract 2\sqrt{55} from -10.
x=-\frac{\sqrt{55}}{10}-\frac{1}{2}
Divide -10-2\sqrt{55} by 20.
x=\frac{\sqrt{55}}{10}-\frac{1}{2} x=-\frac{\sqrt{55}}{10}-\frac{1}{2}
The equation is now solved.
10x^{2}+10x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
10x^{2}+10x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
10x^{2}+10x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
10x^{2}+10x=3
Subtract -3 from 0.
\frac{10x^{2}+10x}{10}=\frac{3}{10}
Divide both sides by 10.
x^{2}+\frac{10}{10}x=\frac{3}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}+x=\frac{3}{10}
Divide 10 by 10.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{3}{10}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{3}{10}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{11}{20}
Add \frac{3}{10} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{11}{20}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{11}{20}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{55}}{10} x+\frac{1}{2}=-\frac{\sqrt{55}}{10}
Simplify.
x=\frac{\sqrt{55}}{10}-\frac{1}{2} x=-\frac{\sqrt{55}}{10}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.