Solve for x
x=-3
x=\frac{1}{7}\approx 0.142857143
Graph
Share
Copied to clipboard
10x^{2}+10x+8-3x^{2}=-10x+11
Subtract 3x^{2} from both sides.
7x^{2}+10x+8=-10x+11
Combine 10x^{2} and -3x^{2} to get 7x^{2}.
7x^{2}+10x+8+10x=11
Add 10x to both sides.
7x^{2}+20x+8=11
Combine 10x and 10x to get 20x.
7x^{2}+20x+8-11=0
Subtract 11 from both sides.
7x^{2}+20x-3=0
Subtract 11 from 8 to get -3.
a+b=20 ab=7\left(-3\right)=-21
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 7x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
-1,21 -3,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -21.
-1+21=20 -3+7=4
Calculate the sum for each pair.
a=-1 b=21
The solution is the pair that gives sum 20.
\left(7x^{2}-x\right)+\left(21x-3\right)
Rewrite 7x^{2}+20x-3 as \left(7x^{2}-x\right)+\left(21x-3\right).
x\left(7x-1\right)+3\left(7x-1\right)
Factor out x in the first and 3 in the second group.
\left(7x-1\right)\left(x+3\right)
Factor out common term 7x-1 by using distributive property.
x=\frac{1}{7} x=-3
To find equation solutions, solve 7x-1=0 and x+3=0.
10x^{2}+10x+8-3x^{2}=-10x+11
Subtract 3x^{2} from both sides.
7x^{2}+10x+8=-10x+11
Combine 10x^{2} and -3x^{2} to get 7x^{2}.
7x^{2}+10x+8+10x=11
Add 10x to both sides.
7x^{2}+20x+8=11
Combine 10x and 10x to get 20x.
7x^{2}+20x+8-11=0
Subtract 11 from both sides.
7x^{2}+20x-3=0
Subtract 11 from 8 to get -3.
x=\frac{-20±\sqrt{20^{2}-4\times 7\left(-3\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 20 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 7\left(-3\right)}}{2\times 7}
Square 20.
x=\frac{-20±\sqrt{400-28\left(-3\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-20±\sqrt{400+84}}{2\times 7}
Multiply -28 times -3.
x=\frac{-20±\sqrt{484}}{2\times 7}
Add 400 to 84.
x=\frac{-20±22}{2\times 7}
Take the square root of 484.
x=\frac{-20±22}{14}
Multiply 2 times 7.
x=\frac{2}{14}
Now solve the equation x=\frac{-20±22}{14} when ± is plus. Add -20 to 22.
x=\frac{1}{7}
Reduce the fraction \frac{2}{14} to lowest terms by extracting and canceling out 2.
x=-\frac{42}{14}
Now solve the equation x=\frac{-20±22}{14} when ± is minus. Subtract 22 from -20.
x=-3
Divide -42 by 14.
x=\frac{1}{7} x=-3
The equation is now solved.
10x^{2}+10x+8-3x^{2}=-10x+11
Subtract 3x^{2} from both sides.
7x^{2}+10x+8=-10x+11
Combine 10x^{2} and -3x^{2} to get 7x^{2}.
7x^{2}+10x+8+10x=11
Add 10x to both sides.
7x^{2}+20x+8=11
Combine 10x and 10x to get 20x.
7x^{2}+20x=11-8
Subtract 8 from both sides.
7x^{2}+20x=3
Subtract 8 from 11 to get 3.
\frac{7x^{2}+20x}{7}=\frac{3}{7}
Divide both sides by 7.
x^{2}+\frac{20}{7}x=\frac{3}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+\frac{20}{7}x+\left(\frac{10}{7}\right)^{2}=\frac{3}{7}+\left(\frac{10}{7}\right)^{2}
Divide \frac{20}{7}, the coefficient of the x term, by 2 to get \frac{10}{7}. Then add the square of \frac{10}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{20}{7}x+\frac{100}{49}=\frac{3}{7}+\frac{100}{49}
Square \frac{10}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{20}{7}x+\frac{100}{49}=\frac{121}{49}
Add \frac{3}{7} to \frac{100}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{10}{7}\right)^{2}=\frac{121}{49}
Factor x^{2}+\frac{20}{7}x+\frac{100}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10}{7}\right)^{2}}=\sqrt{\frac{121}{49}}
Take the square root of both sides of the equation.
x+\frac{10}{7}=\frac{11}{7} x+\frac{10}{7}=-\frac{11}{7}
Simplify.
x=\frac{1}{7} x=-3
Subtract \frac{10}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}