Evaluate
-5.625
Factor
-5.625
Quiz
Arithmetic
5 problems similar to:
10 \times 2.5 + ( \frac { 1 } { 2 } ) ( - 9.8 ) ( 2.5 ) ^ { 2 }
Share
Copied to clipboard
25+\frac{1}{2}\left(-9.8\right)\times 2.5^{2}
Multiply 10 and 2.5 to get 25.
25+\frac{1}{2}\left(-\frac{49}{5}\right)\times 2.5^{2}
Convert decimal number -9.8 to fraction -\frac{98}{10}. Reduce the fraction -\frac{98}{10} to lowest terms by extracting and canceling out 2.
25+\frac{1\left(-49\right)}{2\times 5}\times 2.5^{2}
Multiply \frac{1}{2} times -\frac{49}{5} by multiplying numerator times numerator and denominator times denominator.
25+\frac{-49}{10}\times 2.5^{2}
Do the multiplications in the fraction \frac{1\left(-49\right)}{2\times 5}.
25-\frac{49}{10}\times 2.5^{2}
Fraction \frac{-49}{10} can be rewritten as -\frac{49}{10} by extracting the negative sign.
25-\frac{49}{10}\times 6.25
Calculate 2.5 to the power of 2 and get 6.25.
25-\frac{49}{10}\times \frac{25}{4}
Convert decimal number 6.25 to fraction \frac{625}{100}. Reduce the fraction \frac{625}{100} to lowest terms by extracting and canceling out 25.
25+\frac{-49\times 25}{10\times 4}
Multiply -\frac{49}{10} times \frac{25}{4} by multiplying numerator times numerator and denominator times denominator.
25+\frac{-1225}{40}
Do the multiplications in the fraction \frac{-49\times 25}{10\times 4}.
25-\frac{245}{8}
Reduce the fraction \frac{-1225}{40} to lowest terms by extracting and canceling out 5.
\frac{200}{8}-\frac{245}{8}
Convert 25 to fraction \frac{200}{8}.
\frac{200-245}{8}
Since \frac{200}{8} and \frac{245}{8} have the same denominator, subtract them by subtracting their numerators.
-\frac{45}{8}
Subtract 245 from 200 to get -45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}