Solve for d
d=\frac{1}{390000}\approx 0.000002564
Share
Copied to clipboard
10^{-4}=39d
To multiply powers of the same base, add their exponents. Add 1 and -5 to get -4.
\frac{1}{10000}=39d
Calculate 10 to the power of -4 and get \frac{1}{10000}.
39d=\frac{1}{10000}
Swap sides so that all variable terms are on the left hand side.
d=\frac{\frac{1}{10000}}{39}
Divide both sides by 39.
d=\frac{1}{10000\times 39}
Express \frac{\frac{1}{10000}}{39} as a single fraction.
d=\frac{1}{390000}
Multiply 10000 and 39 to get 390000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}