Solve for x
x = \frac{2 \sqrt{33}}{3} \approx 3.829708431
x = -\frac{2 \sqrt{33}}{3} \approx -3.829708431
Graph
Share
Copied to clipboard
20+\frac{1}{2}\times \left(2\sqrt{7}\right)^{2}=10\times \frac{8}{3}+\frac{1}{2}x^{2}
Multiply 10 and 2 to get 20.
20+\frac{1}{2}\times 2^{2}\left(\sqrt{7}\right)^{2}=10\times \frac{8}{3}+\frac{1}{2}x^{2}
Expand \left(2\sqrt{7}\right)^{2}.
20+\frac{1}{2}\times 4\left(\sqrt{7}\right)^{2}=10\times \frac{8}{3}+\frac{1}{2}x^{2}
Calculate 2 to the power of 2 and get 4.
20+\frac{1}{2}\times 4\times 7=10\times \frac{8}{3}+\frac{1}{2}x^{2}
The square of \sqrt{7} is 7.
20+\frac{1}{2}\times 28=10\times \frac{8}{3}+\frac{1}{2}x^{2}
Multiply 4 and 7 to get 28.
20+14=10\times \frac{8}{3}+\frac{1}{2}x^{2}
Multiply \frac{1}{2} and 28 to get 14.
34=10\times \frac{8}{3}+\frac{1}{2}x^{2}
Add 20 and 14 to get 34.
34=\frac{80}{3}+\frac{1}{2}x^{2}
Multiply 10 and \frac{8}{3} to get \frac{80}{3}.
\frac{80}{3}+\frac{1}{2}x^{2}=34
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x^{2}=34-\frac{80}{3}
Subtract \frac{80}{3} from both sides.
\frac{1}{2}x^{2}=\frac{22}{3}
Subtract \frac{80}{3} from 34 to get \frac{22}{3}.
x^{2}=\frac{22}{3}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x^{2}=\frac{44}{3}
Multiply \frac{22}{3} and 2 to get \frac{44}{3}.
x=\frac{2\sqrt{33}}{3} x=-\frac{2\sqrt{33}}{3}
Take the square root of both sides of the equation.
20+\frac{1}{2}\times \left(2\sqrt{7}\right)^{2}=10\times \frac{8}{3}+\frac{1}{2}x^{2}
Multiply 10 and 2 to get 20.
20+\frac{1}{2}\times 2^{2}\left(\sqrt{7}\right)^{2}=10\times \frac{8}{3}+\frac{1}{2}x^{2}
Expand \left(2\sqrt{7}\right)^{2}.
20+\frac{1}{2}\times 4\left(\sqrt{7}\right)^{2}=10\times \frac{8}{3}+\frac{1}{2}x^{2}
Calculate 2 to the power of 2 and get 4.
20+\frac{1}{2}\times 4\times 7=10\times \frac{8}{3}+\frac{1}{2}x^{2}
The square of \sqrt{7} is 7.
20+\frac{1}{2}\times 28=10\times \frac{8}{3}+\frac{1}{2}x^{2}
Multiply 4 and 7 to get 28.
20+14=10\times \frac{8}{3}+\frac{1}{2}x^{2}
Multiply \frac{1}{2} and 28 to get 14.
34=10\times \frac{8}{3}+\frac{1}{2}x^{2}
Add 20 and 14 to get 34.
34=\frac{80}{3}+\frac{1}{2}x^{2}
Multiply 10 and \frac{8}{3} to get \frac{80}{3}.
\frac{80}{3}+\frac{1}{2}x^{2}=34
Swap sides so that all variable terms are on the left hand side.
\frac{80}{3}+\frac{1}{2}x^{2}-34=0
Subtract 34 from both sides.
-\frac{22}{3}+\frac{1}{2}x^{2}=0
Subtract 34 from \frac{80}{3} to get -\frac{22}{3}.
\frac{1}{2}x^{2}-\frac{22}{3}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1}{2}\left(-\frac{22}{3}\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 0 for b, and -\frac{22}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{1}{2}\left(-\frac{22}{3}\right)}}{2\times \frac{1}{2}}
Square 0.
x=\frac{0±\sqrt{-2\left(-\frac{22}{3}\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{0±\sqrt{\frac{44}{3}}}{2\times \frac{1}{2}}
Multiply -2 times -\frac{22}{3}.
x=\frac{0±\frac{2\sqrt{33}}{3}}{2\times \frac{1}{2}}
Take the square root of \frac{44}{3}.
x=\frac{0±\frac{2\sqrt{33}}{3}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{2\sqrt{33}}{3}
Now solve the equation x=\frac{0±\frac{2\sqrt{33}}{3}}{1} when ± is plus.
x=-\frac{2\sqrt{33}}{3}
Now solve the equation x=\frac{0±\frac{2\sqrt{33}}{3}}{1} when ± is minus.
x=\frac{2\sqrt{33}}{3} x=-\frac{2\sqrt{33}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}