Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{10\left(a-8\right)}{a^{2}-a\times 6}+\frac{1}{a-3}
Express 10\times \frac{a-8}{a^{2}-a\times 6} as a single fraction.
\frac{10\left(a-8\right)}{a\left(a-6\right)}+\frac{1}{a-3}
Factor a^{2}-a\times 6.
\frac{10\left(a-8\right)\left(a-3\right)}{a\left(a-6\right)\left(a-3\right)}+\frac{a\left(a-6\right)}{a\left(a-6\right)\left(a-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-6\right) and a-3 is a\left(a-6\right)\left(a-3\right). Multiply \frac{10\left(a-8\right)}{a\left(a-6\right)} times \frac{a-3}{a-3}. Multiply \frac{1}{a-3} times \frac{a\left(a-6\right)}{a\left(a-6\right)}.
\frac{10\left(a-8\right)\left(a-3\right)+a\left(a-6\right)}{a\left(a-6\right)\left(a-3\right)}
Since \frac{10\left(a-8\right)\left(a-3\right)}{a\left(a-6\right)\left(a-3\right)} and \frac{a\left(a-6\right)}{a\left(a-6\right)\left(a-3\right)} have the same denominator, add them by adding their numerators.
\frac{10a^{2}-30a-80a+240+a^{2}-6a}{a\left(a-6\right)\left(a-3\right)}
Do the multiplications in 10\left(a-8\right)\left(a-3\right)+a\left(a-6\right).
\frac{11a^{2}-116a+240}{a\left(a-6\right)\left(a-3\right)}
Combine like terms in 10a^{2}-30a-80a+240+a^{2}-6a.
\frac{11a^{2}-116a+240}{a^{3}-9a^{2}+18a}
Expand a\left(a-6\right)\left(a-3\right).
\frac{10\left(a-8\right)}{a^{2}-a\times 6}+\frac{1}{a-3}
Express 10\times \frac{a-8}{a^{2}-a\times 6} as a single fraction.
\frac{10\left(a-8\right)}{a\left(a-6\right)}+\frac{1}{a-3}
Factor a^{2}-a\times 6.
\frac{10\left(a-8\right)\left(a-3\right)}{a\left(a-6\right)\left(a-3\right)}+\frac{a\left(a-6\right)}{a\left(a-6\right)\left(a-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-6\right) and a-3 is a\left(a-6\right)\left(a-3\right). Multiply \frac{10\left(a-8\right)}{a\left(a-6\right)} times \frac{a-3}{a-3}. Multiply \frac{1}{a-3} times \frac{a\left(a-6\right)}{a\left(a-6\right)}.
\frac{10\left(a-8\right)\left(a-3\right)+a\left(a-6\right)}{a\left(a-6\right)\left(a-3\right)}
Since \frac{10\left(a-8\right)\left(a-3\right)}{a\left(a-6\right)\left(a-3\right)} and \frac{a\left(a-6\right)}{a\left(a-6\right)\left(a-3\right)} have the same denominator, add them by adding their numerators.
\frac{10a^{2}-30a-80a+240+a^{2}-6a}{a\left(a-6\right)\left(a-3\right)}
Do the multiplications in 10\left(a-8\right)\left(a-3\right)+a\left(a-6\right).
\frac{11a^{2}-116a+240}{a\left(a-6\right)\left(a-3\right)}
Combine like terms in 10a^{2}-30a-80a+240+a^{2}-6a.
\frac{11a^{2}-116a+240}{a^{3}-9a^{2}+18a}
Expand a\left(a-6\right)\left(a-3\right).