Evaluate
\frac{43}{12}\approx 3.583333333
Factor
\frac{43}{2 ^ {2} \cdot 3} = 3\frac{7}{12} = 3.5833333333333335
Share
Copied to clipboard
\frac{60+5}{6}-\frac{7\times 2+1}{2}+\frac{1}{4}
Multiply 10 and 6 to get 60.
\frac{65}{6}-\frac{7\times 2+1}{2}+\frac{1}{4}
Add 60 and 5 to get 65.
\frac{65}{6}-\frac{14+1}{2}+\frac{1}{4}
Multiply 7 and 2 to get 14.
\frac{65}{6}-\frac{15}{2}+\frac{1}{4}
Add 14 and 1 to get 15.
\frac{65}{6}-\frac{45}{6}+\frac{1}{4}
Least common multiple of 6 and 2 is 6. Convert \frac{65}{6} and \frac{15}{2} to fractions with denominator 6.
\frac{65-45}{6}+\frac{1}{4}
Since \frac{65}{6} and \frac{45}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{20}{6}+\frac{1}{4}
Subtract 45 from 65 to get 20.
\frac{10}{3}+\frac{1}{4}
Reduce the fraction \frac{20}{6} to lowest terms by extracting and canceling out 2.
\frac{40}{12}+\frac{3}{12}
Least common multiple of 3 and 4 is 12. Convert \frac{10}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{40+3}{12}
Since \frac{40}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{43}{12}
Add 40 and 3 to get 43.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}