Evaluate
\frac{55}{3}\approx 18.333333333
Factor
\frac{5 \cdot 11}{3} = 18\frac{1}{3} = 18.333333333333332
Share
Copied to clipboard
\frac{\left(10\times 12+5\right)\times 4}{12\left(1\times 4+1\right)}\times \frac{2\times 5+1}{5}
Divide \frac{10\times 12+5}{12} by \frac{1\times 4+1}{4} by multiplying \frac{10\times 12+5}{12} by the reciprocal of \frac{1\times 4+1}{4}.
\frac{5+10\times 12}{3\left(1+4\right)}\times \frac{2\times 5+1}{5}
Cancel out 4 in both numerator and denominator.
\frac{5+120}{3\left(1+4\right)}\times \frac{2\times 5+1}{5}
Multiply 10 and 12 to get 120.
\frac{125}{3\left(1+4\right)}\times \frac{2\times 5+1}{5}
Add 5 and 120 to get 125.
\frac{125}{3\times 5}\times \frac{2\times 5+1}{5}
Add 1 and 4 to get 5.
\frac{125}{15}\times \frac{2\times 5+1}{5}
Multiply 3 and 5 to get 15.
\frac{25}{3}\times \frac{2\times 5+1}{5}
Reduce the fraction \frac{125}{15} to lowest terms by extracting and canceling out 5.
\frac{25}{3}\times \frac{10+1}{5}
Multiply 2 and 5 to get 10.
\frac{25}{3}\times \frac{11}{5}
Add 10 and 1 to get 11.
\frac{25\times 11}{3\times 5}
Multiply \frac{25}{3} times \frac{11}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{275}{15}
Do the multiplications in the fraction \frac{25\times 11}{3\times 5}.
\frac{55}{3}
Reduce the fraction \frac{275}{15} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}