Evaluate
\frac{275}{48}\approx 5.729166667
Factor
\frac{11 \cdot 5 ^ {2}}{3 \cdot 2 ^ {4}} = 5\frac{35}{48} = 5.729166666666667
Share
Copied to clipboard
\frac{20+1}{2}-\left(\frac{1\times 16+3}{16}-\left(3.875-\frac{2\times 4+3}{4}\right)\right)\times \frac{10\times 9+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Multiply 10 and 2 to get 20.
\frac{21}{2}-\left(\frac{1\times 16+3}{16}-\left(3.875-\frac{2\times 4+3}{4}\right)\right)\times \frac{10\times 9+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Add 20 and 1 to get 21.
\frac{21}{2}-\left(\frac{16+3}{16}-\left(3.875-\frac{2\times 4+3}{4}\right)\right)\times \frac{10\times 9+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Multiply 1 and 16 to get 16.
\frac{21}{2}-\left(\frac{19}{16}-\left(3.875-\frac{2\times 4+3}{4}\right)\right)\times \frac{10\times 9+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Add 16 and 3 to get 19.
\frac{21}{2}-\left(\frac{19}{16}-\left(3.875-\frac{8+3}{4}\right)\right)\times \frac{10\times 9+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Multiply 2 and 4 to get 8.
\frac{21}{2}-\left(\frac{19}{16}-\left(3.875-\frac{11}{4}\right)\right)\times \frac{10\times 9+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Add 8 and 3 to get 11.
\frac{21}{2}-\left(\frac{19}{16}-\left(\frac{31}{8}-\frac{11}{4}\right)\right)\times \frac{10\times 9+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Convert decimal number 3.875 to fraction \frac{3875}{1000}. Reduce the fraction \frac{3875}{1000} to lowest terms by extracting and canceling out 125.
\frac{21}{2}-\left(\frac{19}{16}-\left(\frac{31}{8}-\frac{22}{8}\right)\right)\times \frac{10\times 9+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Least common multiple of 8 and 4 is 8. Convert \frac{31}{8} and \frac{11}{4} to fractions with denominator 8.
\frac{21}{2}-\left(\frac{19}{16}-\frac{31-22}{8}\right)\times \frac{10\times 9+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Since \frac{31}{8} and \frac{22}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{21}{2}-\left(\frac{19}{16}-\frac{9}{8}\right)\times \frac{10\times 9+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Subtract 22 from 31 to get 9.
\frac{21}{2}-\left(\frac{19}{16}-\frac{18}{16}\right)\times \frac{10\times 9+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Least common multiple of 16 and 8 is 16. Convert \frac{19}{16} and \frac{9}{8} to fractions with denominator 16.
\frac{21}{2}-\frac{19-18}{16}\times \frac{10\times 9+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Since \frac{19}{16} and \frac{18}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{21}{2}-\frac{1}{16}\times \frac{10\times 9+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Subtract 18 from 19 to get 1.
\frac{21}{2}-\frac{1}{16}\times \frac{90+5}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Multiply 10 and 9 to get 90.
\frac{21}{2}-\frac{1}{16}\times \frac{95}{9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Add 90 and 5 to get 95.
\frac{21}{2}-\frac{1\times 95}{16\times 9}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Multiply \frac{1}{16} times \frac{95}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{21}{2}-\frac{95}{144}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Do the multiplications in the fraction \frac{1\times 95}{16\times 9}.
\frac{1512}{144}-\frac{95}{144}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Least common multiple of 2 and 144 is 144. Convert \frac{21}{2} and \frac{95}{144} to fractions with denominator 144.
\frac{1512-95}{144}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Since \frac{1512}{144} and \frac{95}{144} have the same denominator, subtract them by subtracting their numerators.
\frac{1417}{144}-\frac{3\times 12+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Subtract 95 from 1512 to get 1417.
\frac{1417}{144}-\frac{36+7}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Multiply 3 and 12 to get 36.
\frac{1417}{144}-\frac{43}{12}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Add 36 and 7 to get 43.
\frac{1417}{144}-\frac{516}{144}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Least common multiple of 144 and 12 is 144. Convert \frac{1417}{144} and \frac{43}{12} to fractions with denominator 144.
\frac{1417-516}{144}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Since \frac{1417}{144} and \frac{516}{144} have the same denominator, subtract them by subtracting their numerators.
\frac{901}{144}-\frac{2\times 18+5}{18}+\frac{3\times 2+1}{2}-1.75
Subtract 516 from 1417 to get 901.
\frac{901}{144}-\frac{36+5}{18}+\frac{3\times 2+1}{2}-1.75
Multiply 2 and 18 to get 36.
\frac{901}{144}-\frac{41}{18}+\frac{3\times 2+1}{2}-1.75
Add 36 and 5 to get 41.
\frac{901}{144}-\frac{328}{144}+\frac{3\times 2+1}{2}-1.75
Least common multiple of 144 and 18 is 144. Convert \frac{901}{144} and \frac{41}{18} to fractions with denominator 144.
\frac{901-328}{144}+\frac{3\times 2+1}{2}-1.75
Since \frac{901}{144} and \frac{328}{144} have the same denominator, subtract them by subtracting their numerators.
\frac{573}{144}+\frac{3\times 2+1}{2}-1.75
Subtract 328 from 901 to get 573.
\frac{191}{48}+\frac{3\times 2+1}{2}-1.75
Reduce the fraction \frac{573}{144} to lowest terms by extracting and canceling out 3.
\frac{191}{48}+\frac{6+1}{2}-1.75
Multiply 3 and 2 to get 6.
\frac{191}{48}+\frac{7}{2}-1.75
Add 6 and 1 to get 7.
\frac{191}{48}+\frac{168}{48}-1.75
Least common multiple of 48 and 2 is 48. Convert \frac{191}{48} and \frac{7}{2} to fractions with denominator 48.
\frac{191+168}{48}-1.75
Since \frac{191}{48} and \frac{168}{48} have the same denominator, add them by adding their numerators.
\frac{359}{48}-1.75
Add 191 and 168 to get 359.
\frac{359}{48}-\frac{7}{4}
Convert decimal number 1.75 to fraction \frac{175}{100}. Reduce the fraction \frac{175}{100} to lowest terms by extracting and canceling out 25.
\frac{359}{48}-\frac{84}{48}
Least common multiple of 48 and 4 is 48. Convert \frac{359}{48} and \frac{7}{4} to fractions with denominator 48.
\frac{359-84}{48}
Since \frac{359}{48} and \frac{84}{48} have the same denominator, subtract them by subtracting their numerators.
\frac{275}{48}
Subtract 84 from 359 to get 275.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}