Evaluate
\frac{168245}{5252}\approx 32.034463062
Factor
\frac{5 \cdot 7 \cdot 11 \cdot 19 \cdot 23}{2 ^ {2} \cdot 13 \cdot 101} = 32\frac{181}{5252} = 32.034463061690786
Share
Copied to clipboard
\frac{160+1}{16}\times \frac{3\times 101+1}{101}\times \frac{1\times 52+3}{52}
Multiply 10 and 16 to get 160.
\frac{161}{16}\times \frac{3\times 101+1}{101}\times \frac{1\times 52+3}{52}
Add 160 and 1 to get 161.
\frac{161}{16}\times \frac{303+1}{101}\times \frac{1\times 52+3}{52}
Multiply 3 and 101 to get 303.
\frac{161}{16}\times \frac{304}{101}\times \frac{1\times 52+3}{52}
Add 303 and 1 to get 304.
\frac{161\times 304}{16\times 101}\times \frac{1\times 52+3}{52}
Multiply \frac{161}{16} times \frac{304}{101} by multiplying numerator times numerator and denominator times denominator.
\frac{48944}{1616}\times \frac{1\times 52+3}{52}
Do the multiplications in the fraction \frac{161\times 304}{16\times 101}.
\frac{3059}{101}\times \frac{1\times 52+3}{52}
Reduce the fraction \frac{48944}{1616} to lowest terms by extracting and canceling out 16.
\frac{3059}{101}\times \frac{52+3}{52}
Multiply 1 and 52 to get 52.
\frac{3059}{101}\times \frac{55}{52}
Add 52 and 3 to get 55.
\frac{3059\times 55}{101\times 52}
Multiply \frac{3059}{101} times \frac{55}{52} by multiplying numerator times numerator and denominator times denominator.
\frac{168245}{5252}
Do the multiplications in the fraction \frac{3059\times 55}{101\times 52}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}