Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{100+1}{10}+10^{-3}-\left(\frac{1}{10}\right)^{-1}-10^{-3}-\frac{4}{\frac{4}{5}\left(-\frac{1\times 5+1}{5}\right)^{-1}}
Multiply 10 and 10 to get 100.
\frac{101}{10}+10^{-3}-\left(\frac{1}{10}\right)^{-1}-10^{-3}-\frac{4}{\frac{4}{5}\left(-\frac{1\times 5+1}{5}\right)^{-1}}
Add 100 and 1 to get 101.
\frac{101}{10}+\frac{1}{1000}-\left(\frac{1}{10}\right)^{-1}-10^{-3}-\frac{4}{\frac{4}{5}\left(-\frac{1\times 5+1}{5}\right)^{-1}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{10101}{1000}-\left(\frac{1}{10}\right)^{-1}-10^{-3}-\frac{4}{\frac{4}{5}\left(-\frac{1\times 5+1}{5}\right)^{-1}}
Add \frac{101}{10} and \frac{1}{1000} to get \frac{10101}{1000}.
\frac{10101}{1000}-10-10^{-3}-\frac{4}{\frac{4}{5}\left(-\frac{1\times 5+1}{5}\right)^{-1}}
Calculate \frac{1}{10} to the power of -1 and get 10.
\frac{101}{1000}-10^{-3}-\frac{4}{\frac{4}{5}\left(-\frac{1\times 5+1}{5}\right)^{-1}}
Subtract 10 from \frac{10101}{1000} to get \frac{101}{1000}.
\frac{101}{1000}-\frac{1}{1000}-\frac{4}{\frac{4}{5}\left(-\frac{1\times 5+1}{5}\right)^{-1}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{1}{10}-\frac{4}{\frac{4}{5}\left(-\frac{1\times 5+1}{5}\right)^{-1}}
Subtract \frac{1}{1000} from \frac{101}{1000} to get \frac{1}{10}.
\frac{1}{10}-\frac{4}{\frac{4}{5}\left(-\frac{5+1}{5}\right)^{-1}}
Multiply 1 and 5 to get 5.
\frac{1}{10}-\frac{4}{\frac{4}{5}\left(-\frac{6}{5}\right)^{-1}}
Add 5 and 1 to get 6.
\frac{1}{10}-\frac{4}{\frac{4}{5}\left(-\frac{5}{6}\right)}
Calculate -\frac{6}{5} to the power of -1 and get -\frac{5}{6}.
\frac{1}{10}-\frac{4}{-\frac{2}{3}}
Multiply \frac{4}{5} and -\frac{5}{6} to get -\frac{2}{3}.
\frac{1}{10}-4\left(-\frac{3}{2}\right)
Divide 4 by -\frac{2}{3} by multiplying 4 by the reciprocal of -\frac{2}{3}.
\frac{1}{10}-\left(-6\right)
Multiply 4 and -\frac{3}{2} to get -6.
\frac{1}{10}+6
The opposite of -6 is 6.
\frac{61}{10}
Add \frac{1}{10} and 6 to get \frac{61}{10}.