Evaluate
\frac{22}{105}\approx 0.20952381
Factor
\frac{2 \cdot 11}{3 \cdot 5 \cdot 7} = 0.20952380952380953
Share
Copied to clipboard
\frac{\frac{1}{5}\times 1}{3}+\frac{\frac{15}{50}\times 1}{7}+\frac{\frac{25}{50}\times 1}{5}
Reduce the fraction \frac{10}{50} to lowest terms by extracting and canceling out 10.
\frac{\frac{1}{5}}{3}+\frac{\frac{15}{50}\times 1}{7}+\frac{\frac{25}{50}\times 1}{5}
Multiply \frac{1}{5} and 1 to get \frac{1}{5}.
\frac{1}{5\times 3}+\frac{\frac{15}{50}\times 1}{7}+\frac{\frac{25}{50}\times 1}{5}
Express \frac{\frac{1}{5}}{3} as a single fraction.
\frac{1}{15}+\frac{\frac{15}{50}\times 1}{7}+\frac{\frac{25}{50}\times 1}{5}
Multiply 5 and 3 to get 15.
\frac{1}{15}+\frac{\frac{3}{10}\times 1}{7}+\frac{\frac{25}{50}\times 1}{5}
Reduce the fraction \frac{15}{50} to lowest terms by extracting and canceling out 5.
\frac{1}{15}+\frac{\frac{3}{10}}{7}+\frac{\frac{25}{50}\times 1}{5}
Multiply \frac{3}{10} and 1 to get \frac{3}{10}.
\frac{1}{15}+\frac{3}{10\times 7}+\frac{\frac{25}{50}\times 1}{5}
Express \frac{\frac{3}{10}}{7} as a single fraction.
\frac{1}{15}+\frac{3}{70}+\frac{\frac{25}{50}\times 1}{5}
Multiply 10 and 7 to get 70.
\frac{14}{210}+\frac{9}{210}+\frac{\frac{25}{50}\times 1}{5}
Least common multiple of 15 and 70 is 210. Convert \frac{1}{15} and \frac{3}{70} to fractions with denominator 210.
\frac{14+9}{210}+\frac{\frac{25}{50}\times 1}{5}
Since \frac{14}{210} and \frac{9}{210} have the same denominator, add them by adding their numerators.
\frac{23}{210}+\frac{\frac{25}{50}\times 1}{5}
Add 14 and 9 to get 23.
\frac{23}{210}+\frac{\frac{1}{2}\times 1}{5}
Reduce the fraction \frac{25}{50} to lowest terms by extracting and canceling out 25.
\frac{23}{210}+\frac{\frac{1}{2}}{5}
Multiply \frac{1}{2} and 1 to get \frac{1}{2}.
\frac{23}{210}+\frac{1}{2\times 5}
Express \frac{\frac{1}{2}}{5} as a single fraction.
\frac{23}{210}+\frac{1}{10}
Multiply 2 and 5 to get 10.
\frac{23}{210}+\frac{21}{210}
Least common multiple of 210 and 10 is 210. Convert \frac{23}{210} and \frac{1}{10} to fractions with denominator 210.
\frac{23+21}{210}
Since \frac{23}{210} and \frac{21}{210} have the same denominator, add them by adding their numerators.
\frac{44}{210}
Add 23 and 21 to get 44.
\frac{22}{105}
Reduce the fraction \frac{44}{210} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}