Solve for x
x = \frac{480 \sqrt{12793} + 70442}{49} \approx 2545.570398408
Graph
Share
Copied to clipboard
\left(10\times 8+\sqrt{2x-3}\right)^{2}=\left(3\sqrt{x-1}\right)^{2}
Square both sides of the equation.
\left(80+\sqrt{2x-3}\right)^{2}=\left(3\sqrt{x-1}\right)^{2}
Multiply 10 and 8 to get 80.
6400+160\sqrt{2x-3}+\left(\sqrt{2x-3}\right)^{2}=\left(3\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(80+\sqrt{2x-3}\right)^{2}.
6400+160\sqrt{2x-3}+2x-3=\left(3\sqrt{x-1}\right)^{2}
Calculate \sqrt{2x-3} to the power of 2 and get 2x-3.
6397+160\sqrt{2x-3}+2x=\left(3\sqrt{x-1}\right)^{2}
Subtract 3 from 6400 to get 6397.
6397+160\sqrt{2x-3}+2x=3^{2}\left(\sqrt{x-1}\right)^{2}
Expand \left(3\sqrt{x-1}\right)^{2}.
6397+160\sqrt{2x-3}+2x=9\left(\sqrt{x-1}\right)^{2}
Calculate 3 to the power of 2 and get 9.
6397+160\sqrt{2x-3}+2x=9\left(x-1\right)
Calculate \sqrt{x-1} to the power of 2 and get x-1.
6397+160\sqrt{2x-3}+2x=9x-9
Use the distributive property to multiply 9 by x-1.
160\sqrt{2x-3}=9x-9-\left(6397+2x\right)
Subtract 6397+2x from both sides of the equation.
160\sqrt{2x-3}=9x-9-6397-2x
To find the opposite of 6397+2x, find the opposite of each term.
160\sqrt{2x-3}=9x-6406-2x
Subtract 6397 from -9 to get -6406.
160\sqrt{2x-3}=7x-6406
Combine 9x and -2x to get 7x.
\left(160\sqrt{2x-3}\right)^{2}=\left(7x-6406\right)^{2}
Square both sides of the equation.
160^{2}\left(\sqrt{2x-3}\right)^{2}=\left(7x-6406\right)^{2}
Expand \left(160\sqrt{2x-3}\right)^{2}.
25600\left(\sqrt{2x-3}\right)^{2}=\left(7x-6406\right)^{2}
Calculate 160 to the power of 2 and get 25600.
25600\left(2x-3\right)=\left(7x-6406\right)^{2}
Calculate \sqrt{2x-3} to the power of 2 and get 2x-3.
51200x-76800=\left(7x-6406\right)^{2}
Use the distributive property to multiply 25600 by 2x-3.
51200x-76800=49x^{2}-89684x+41036836
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7x-6406\right)^{2}.
51200x-76800-49x^{2}=-89684x+41036836
Subtract 49x^{2} from both sides.
51200x-76800-49x^{2}+89684x=41036836
Add 89684x to both sides.
140884x-76800-49x^{2}=41036836
Combine 51200x and 89684x to get 140884x.
140884x-76800-49x^{2}-41036836=0
Subtract 41036836 from both sides.
140884x-41113636-49x^{2}=0
Subtract 41036836 from -76800 to get -41113636.
-49x^{2}+140884x-41113636=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-140884±\sqrt{140884^{2}-4\left(-49\right)\left(-41113636\right)}}{2\left(-49\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -49 for a, 140884 for b, and -41113636 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-140884±\sqrt{19848301456-4\left(-49\right)\left(-41113636\right)}}{2\left(-49\right)}
Square 140884.
x=\frac{-140884±\sqrt{19848301456+196\left(-41113636\right)}}{2\left(-49\right)}
Multiply -4 times -49.
x=\frac{-140884±\sqrt{19848301456-8058272656}}{2\left(-49\right)}
Multiply 196 times -41113636.
x=\frac{-140884±\sqrt{11790028800}}{2\left(-49\right)}
Add 19848301456 to -8058272656.
x=\frac{-140884±960\sqrt{12793}}{2\left(-49\right)}
Take the square root of 11790028800.
x=\frac{-140884±960\sqrt{12793}}{-98}
Multiply 2 times -49.
x=\frac{960\sqrt{12793}-140884}{-98}
Now solve the equation x=\frac{-140884±960\sqrt{12793}}{-98} when ± is plus. Add -140884 to 960\sqrt{12793}.
x=\frac{70442-480\sqrt{12793}}{49}
Divide -140884+960\sqrt{12793} by -98.
x=\frac{-960\sqrt{12793}-140884}{-98}
Now solve the equation x=\frac{-140884±960\sqrt{12793}}{-98} when ± is minus. Subtract 960\sqrt{12793} from -140884.
x=\frac{480\sqrt{12793}+70442}{49}
Divide -140884-960\sqrt{12793} by -98.
x=\frac{70442-480\sqrt{12793}}{49} x=\frac{480\sqrt{12793}+70442}{49}
The equation is now solved.
10\times 8+\sqrt{2\times \frac{70442-480\sqrt{12793}}{49}-3}=3\sqrt{\frac{70442-480\sqrt{12793}}{49}-1}
Substitute \frac{70442-480\sqrt{12793}}{49} for x in the equation 10\times 8+\sqrt{2x-3}=3\sqrt{x-1}.
\frac{400}{7}+\frac{3}{7}\times 12793^{\frac{1}{2}}=\frac{720}{7}-\frac{3}{7}\times 12793^{\frac{1}{2}}
Simplify. The value x=\frac{70442-480\sqrt{12793}}{49} does not satisfy the equation.
10\times 8+\sqrt{2\times \frac{480\sqrt{12793}+70442}{49}-3}=3\sqrt{\frac{480\sqrt{12793}+70442}{49}-1}
Substitute \frac{480\sqrt{12793}+70442}{49} for x in the equation 10\times 8+\sqrt{2x-3}=3\sqrt{x-1}.
\frac{720}{7}+\frac{3}{7}\times 12793^{\frac{1}{2}}=\frac{720}{7}+\frac{3}{7}\times 12793^{\frac{1}{2}}
Simplify. The value x=\frac{480\sqrt{12793}+70442}{49} satisfies the equation.
x=\frac{480\sqrt{12793}+70442}{49}
Equation \sqrt{2x-3}+80=3\sqrt{x-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}