Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

300=\frac{1}{2}v^{2}
Multiply 10 and 30 to get 300.
\frac{1}{2}v^{2}=300
Swap sides so that all variable terms are on the left hand side.
v^{2}=300\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
v^{2}=600
Multiply 300 and 2 to get 600.
v=10\sqrt{6} v=-10\sqrt{6}
Take the square root of both sides of the equation.
300=\frac{1}{2}v^{2}
Multiply 10 and 30 to get 300.
\frac{1}{2}v^{2}=300
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}v^{2}-300=0
Subtract 300 from both sides.
v=\frac{0±\sqrt{0^{2}-4\times \frac{1}{2}\left(-300\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 0 for b, and -300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±\sqrt{-4\times \frac{1}{2}\left(-300\right)}}{2\times \frac{1}{2}}
Square 0.
v=\frac{0±\sqrt{-2\left(-300\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
v=\frac{0±\sqrt{600}}{2\times \frac{1}{2}}
Multiply -2 times -300.
v=\frac{0±10\sqrt{6}}{2\times \frac{1}{2}}
Take the square root of 600.
v=\frac{0±10\sqrt{6}}{1}
Multiply 2 times \frac{1}{2}.
v=10\sqrt{6}
Now solve the equation v=\frac{0±10\sqrt{6}}{1} when ± is plus.
v=-10\sqrt{6}
Now solve the equation v=\frac{0±10\sqrt{6}}{1} when ± is minus.
v=10\sqrt{6} v=-10\sqrt{6}
The equation is now solved.