Solve for x
x=1
Graph
Share
Copied to clipboard
2000+\left(10-x\right)\left(200+50x\right)+4\left(200-50x\right)-3600=1250
Multiply 10 and 200 to get 2000.
2000+2000+300x-50x^{2}+4\left(200-50x\right)-3600=1250
Use the distributive property to multiply 10-x by 200+50x and combine like terms.
4000+300x-50x^{2}+4\left(200-50x\right)-3600=1250
Add 2000 and 2000 to get 4000.
4000+300x-50x^{2}+800-200x-3600=1250
Use the distributive property to multiply 4 by 200-50x.
4800+300x-50x^{2}-200x-3600=1250
Add 4000 and 800 to get 4800.
4800+100x-50x^{2}-3600=1250
Combine 300x and -200x to get 100x.
1200+100x-50x^{2}=1250
Subtract 3600 from 4800 to get 1200.
1200+100x-50x^{2}-1250=0
Subtract 1250 from both sides.
-50+100x-50x^{2}=0
Subtract 1250 from 1200 to get -50.
-50x^{2}+100x-50=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±\sqrt{100^{2}-4\left(-50\right)\left(-50\right)}}{2\left(-50\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -50 for a, 100 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-50\right)\left(-50\right)}}{2\left(-50\right)}
Square 100.
x=\frac{-100±\sqrt{10000+200\left(-50\right)}}{2\left(-50\right)}
Multiply -4 times -50.
x=\frac{-100±\sqrt{10000-10000}}{2\left(-50\right)}
Multiply 200 times -50.
x=\frac{-100±\sqrt{0}}{2\left(-50\right)}
Add 10000 to -10000.
x=-\frac{100}{2\left(-50\right)}
Take the square root of 0.
x=-\frac{100}{-100}
Multiply 2 times -50.
x=1
Divide -100 by -100.
2000+\left(10-x\right)\left(200+50x\right)+4\left(200-50x\right)-3600=1250
Multiply 10 and 200 to get 2000.
2000+2000+300x-50x^{2}+4\left(200-50x\right)-3600=1250
Use the distributive property to multiply 10-x by 200+50x and combine like terms.
4000+300x-50x^{2}+4\left(200-50x\right)-3600=1250
Add 2000 and 2000 to get 4000.
4000+300x-50x^{2}+800-200x-3600=1250
Use the distributive property to multiply 4 by 200-50x.
4800+300x-50x^{2}-200x-3600=1250
Add 4000 and 800 to get 4800.
4800+100x-50x^{2}-3600=1250
Combine 300x and -200x to get 100x.
1200+100x-50x^{2}=1250
Subtract 3600 from 4800 to get 1200.
100x-50x^{2}=1250-1200
Subtract 1200 from both sides.
100x-50x^{2}=50
Subtract 1200 from 1250 to get 50.
-50x^{2}+100x=50
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-50x^{2}+100x}{-50}=\frac{50}{-50}
Divide both sides by -50.
x^{2}+\frac{100}{-50}x=\frac{50}{-50}
Dividing by -50 undoes the multiplication by -50.
x^{2}-2x=\frac{50}{-50}
Divide 100 by -50.
x^{2}-2x=-1
Divide 50 by -50.
x^{2}-2x+1=-1+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=0
Add -1 to 1.
\left(x-1\right)^{2}=0
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-1=0 x-1=0
Simplify.
x=1 x=1
Add 1 to both sides of the equation.
x=1
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}