Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

100+x^{2}=8^{2}-\left(12-x\right)^{2}
Calculate 10 to the power of 2 and get 100.
100+x^{2}=64-\left(12-x\right)^{2}
Calculate 8 to the power of 2 and get 64.
100+x^{2}=64-\left(144-24x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12-x\right)^{2}.
100+x^{2}=64-144+24x-x^{2}
To find the opposite of 144-24x+x^{2}, find the opposite of each term.
100+x^{2}=-80+24x-x^{2}
Subtract 144 from 64 to get -80.
100+x^{2}-\left(-80\right)=24x-x^{2}
Subtract -80 from both sides.
100+x^{2}+80=24x-x^{2}
The opposite of -80 is 80.
100+x^{2}+80-24x=-x^{2}
Subtract 24x from both sides.
180+x^{2}-24x=-x^{2}
Add 100 and 80 to get 180.
180+x^{2}-24x+x^{2}=0
Add x^{2} to both sides.
180+2x^{2}-24x=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-24x+180=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 2\times 180}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -24 for b, and 180 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 2\times 180}}{2\times 2}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-8\times 180}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-24\right)±\sqrt{576-1440}}{2\times 2}
Multiply -8 times 180.
x=\frac{-\left(-24\right)±\sqrt{-864}}{2\times 2}
Add 576 to -1440.
x=\frac{-\left(-24\right)±12\sqrt{6}i}{2\times 2}
Take the square root of -864.
x=\frac{24±12\sqrt{6}i}{2\times 2}
The opposite of -24 is 24.
x=\frac{24±12\sqrt{6}i}{4}
Multiply 2 times 2.
x=\frac{24+12\sqrt{6}i}{4}
Now solve the equation x=\frac{24±12\sqrt{6}i}{4} when ± is plus. Add 24 to 12i\sqrt{6}.
x=6+3\sqrt{6}i
Divide 24+12i\sqrt{6} by 4.
x=\frac{-12\sqrt{6}i+24}{4}
Now solve the equation x=\frac{24±12\sqrt{6}i}{4} when ± is minus. Subtract 12i\sqrt{6} from 24.
x=-3\sqrt{6}i+6
Divide 24-12i\sqrt{6} by 4.
x=6+3\sqrt{6}i x=-3\sqrt{6}i+6
The equation is now solved.
100+x^{2}=8^{2}-\left(12-x\right)^{2}
Calculate 10 to the power of 2 and get 100.
100+x^{2}=64-\left(12-x\right)^{2}
Calculate 8 to the power of 2 and get 64.
100+x^{2}=64-\left(144-24x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12-x\right)^{2}.
100+x^{2}=64-144+24x-x^{2}
To find the opposite of 144-24x+x^{2}, find the opposite of each term.
100+x^{2}=-80+24x-x^{2}
Subtract 144 from 64 to get -80.
100+x^{2}-24x=-80-x^{2}
Subtract 24x from both sides.
100+x^{2}-24x+x^{2}=-80
Add x^{2} to both sides.
100+2x^{2}-24x=-80
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-24x=-80-100
Subtract 100 from both sides.
2x^{2}-24x=-180
Subtract 100 from -80 to get -180.
\frac{2x^{2}-24x}{2}=-\frac{180}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{24}{2}\right)x=-\frac{180}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-12x=-\frac{180}{2}
Divide -24 by 2.
x^{2}-12x=-90
Divide -180 by 2.
x^{2}-12x+\left(-6\right)^{2}=-90+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-90+36
Square -6.
x^{2}-12x+36=-54
Add -90 to 36.
\left(x-6\right)^{2}=-54
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{-54}
Take the square root of both sides of the equation.
x-6=3\sqrt{6}i x-6=-3\sqrt{6}i
Simplify.
x=6+3\sqrt{6}i x=-3\sqrt{6}i+6
Add 6 to both sides of the equation.