Evaluate
\frac{3\left(\sqrt{15}+110\right)}{2}\approx 170.809475019
Factor
\frac{3 {(\sqrt{15} + 110)}}{2} = 170.80947501931112
Share
Copied to clipboard
10^{2}+\frac{\sqrt{3^{3}\times 5}}{2}-4^{2}+3^{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
100+\frac{\sqrt{3^{3}\times 5}}{2}-4^{2}+3^{4}
Calculate 10 to the power of 2 and get 100.
100+\frac{\sqrt{27\times 5}}{2}-4^{2}+3^{4}
Calculate 3 to the power of 3 and get 27.
100+\frac{\sqrt{135}}{2}-4^{2}+3^{4}
Multiply 27 and 5 to get 135.
100+\frac{3\sqrt{15}}{2}-4^{2}+3^{4}
Factor 135=3^{2}\times 15. Rewrite the square root of the product \sqrt{3^{2}\times 15} as the product of square roots \sqrt{3^{2}}\sqrt{15}. Take the square root of 3^{2}.
\frac{100\times 2}{2}+\frac{3\sqrt{15}}{2}-4^{2}+3^{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 100 times \frac{2}{2}.
\frac{100\times 2+3\sqrt{15}}{2}-4^{2}+3^{4}
Since \frac{100\times 2}{2} and \frac{3\sqrt{15}}{2} have the same denominator, add them by adding their numerators.
\frac{200+3\sqrt{15}}{2}-4^{2}+3^{4}
Do the multiplications in 100\times 2+3\sqrt{15}.
\frac{200+3\sqrt{15}}{2}-16+3^{4}
Calculate 4 to the power of 2 and get 16.
\frac{200+3\sqrt{15}}{2}-\frac{16\times 2}{2}+3^{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{2}{2}.
\frac{200+3\sqrt{15}-16\times 2}{2}+3^{4}
Since \frac{200+3\sqrt{15}}{2} and \frac{16\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{200+3\sqrt{15}-32}{2}+3^{4}
Do the multiplications in 200+3\sqrt{15}-16\times 2.
\frac{168+3\sqrt{15}}{2}+3^{4}
Do the calculations in 200+3\sqrt{15}-32.
\frac{168+3\sqrt{15}}{2}+81
Calculate 3 to the power of 4 and get 81.
\frac{168+3\sqrt{15}}{2}+\frac{81\times 2}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 81 times \frac{2}{2}.
\frac{168+3\sqrt{15}+81\times 2}{2}
Since \frac{168+3\sqrt{15}}{2} and \frac{81\times 2}{2} have the same denominator, add them by adding their numerators.
\frac{168+3\sqrt{15}+162}{2}
Do the multiplications in 168+3\sqrt{15}+81\times 2.
\frac{330+3\sqrt{15}}{2}
Do the calculations in 168+3\sqrt{15}+162.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}