Solve for V
V=\frac{19g}{20}+\frac{100}{19}
Solve for g
g=\frac{20V}{19}-\frac{2000}{361}
Share
Copied to clipboard
10=V\times 1.9-\frac{1}{2}g\times 3.61
Calculate 1.9 to the power of 2 and get 3.61.
10=V\times 1.9-\frac{361}{200}g
Multiply \frac{1}{2} and 3.61 to get \frac{361}{200}.
V\times 1.9-\frac{361}{200}g=10
Swap sides so that all variable terms are on the left hand side.
V\times 1.9=10+\frac{361}{200}g
Add \frac{361}{200}g to both sides.
1.9V=\frac{361g}{200}+10
The equation is in standard form.
\frac{1.9V}{1.9}=\frac{\frac{361g}{200}+10}{1.9}
Divide both sides of the equation by 1.9, which is the same as multiplying both sides by the reciprocal of the fraction.
V=\frac{\frac{361g}{200}+10}{1.9}
Dividing by 1.9 undoes the multiplication by 1.9.
V=\frac{19g}{20}+\frac{100}{19}
Divide 10+\frac{361g}{200} by 1.9 by multiplying 10+\frac{361g}{200} by the reciprocal of 1.9.
10=V\times 1.9-\frac{1}{2}g\times 3.61
Calculate 1.9 to the power of 2 and get 3.61.
10=V\times 1.9-\frac{361}{200}g
Multiply \frac{1}{2} and 3.61 to get \frac{361}{200}.
V\times 1.9-\frac{361}{200}g=10
Swap sides so that all variable terms are on the left hand side.
-\frac{361}{200}g=10-V\times 1.9
Subtract V\times 1.9 from both sides.
-\frac{361}{200}g=10-1.9V
Multiply -1 and 1.9 to get -1.9.
-\frac{361}{200}g=-\frac{19V}{10}+10
The equation is in standard form.
\frac{-\frac{361}{200}g}{-\frac{361}{200}}=\frac{-\frac{19V}{10}+10}{-\frac{361}{200}}
Divide both sides of the equation by -\frac{361}{200}, which is the same as multiplying both sides by the reciprocal of the fraction.
g=\frac{-\frac{19V}{10}+10}{-\frac{361}{200}}
Dividing by -\frac{361}{200} undoes the multiplication by -\frac{361}{200}.
g=\frac{20V}{19}-\frac{2000}{361}
Divide 10-\frac{19V}{10} by -\frac{361}{200} by multiplying 10-\frac{19V}{10} by the reciprocal of -\frac{361}{200}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}