Solve for t
t=\frac{1+\sqrt{7}i}{2}\approx 0.5+1.322875656i
t=\frac{-\sqrt{7}i+1}{2}\approx 0.5-1.322875656i
Share
Copied to clipboard
5t-5t^{2}=10
Swap sides so that all variable terms are on the left hand side.
5t-5t^{2}-10=0
Subtract 10 from both sides.
-5t^{2}+5t-10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-5±\sqrt{5^{2}-4\left(-5\right)\left(-10\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 5 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-5±\sqrt{25-4\left(-5\right)\left(-10\right)}}{2\left(-5\right)}
Square 5.
t=\frac{-5±\sqrt{25+20\left(-10\right)}}{2\left(-5\right)}
Multiply -4 times -5.
t=\frac{-5±\sqrt{25-200}}{2\left(-5\right)}
Multiply 20 times -10.
t=\frac{-5±\sqrt{-175}}{2\left(-5\right)}
Add 25 to -200.
t=\frac{-5±5\sqrt{7}i}{2\left(-5\right)}
Take the square root of -175.
t=\frac{-5±5\sqrt{7}i}{-10}
Multiply 2 times -5.
t=\frac{-5+5\sqrt{7}i}{-10}
Now solve the equation t=\frac{-5±5\sqrt{7}i}{-10} when ± is plus. Add -5 to 5i\sqrt{7}.
t=\frac{-\sqrt{7}i+1}{2}
Divide -5+5i\sqrt{7} by -10.
t=\frac{-5\sqrt{7}i-5}{-10}
Now solve the equation t=\frac{-5±5\sqrt{7}i}{-10} when ± is minus. Subtract 5i\sqrt{7} from -5.
t=\frac{1+\sqrt{7}i}{2}
Divide -5-5i\sqrt{7} by -10.
t=\frac{-\sqrt{7}i+1}{2} t=\frac{1+\sqrt{7}i}{2}
The equation is now solved.
5t-5t^{2}=10
Swap sides so that all variable terms are on the left hand side.
-5t^{2}+5t=10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5t^{2}+5t}{-5}=\frac{10}{-5}
Divide both sides by -5.
t^{2}+\frac{5}{-5}t=\frac{10}{-5}
Dividing by -5 undoes the multiplication by -5.
t^{2}-t=\frac{10}{-5}
Divide 5 by -5.
t^{2}-t=-2
Divide 10 by -5.
t^{2}-t+\left(-\frac{1}{2}\right)^{2}=-2+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-t+\frac{1}{4}=-2+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}-t+\frac{1}{4}=-\frac{7}{4}
Add -2 to \frac{1}{4}.
\left(t-\frac{1}{2}\right)^{2}=-\frac{7}{4}
Factor t^{2}-t+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
Take the square root of both sides of the equation.
t-\frac{1}{2}=\frac{\sqrt{7}i}{2} t-\frac{1}{2}=-\frac{\sqrt{7}i}{2}
Simplify.
t=\frac{1+\sqrt{7}i}{2} t=\frac{-\sqrt{7}i+1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}