Solve for x
x=12
Graph
Share
Copied to clipboard
10=x\times \frac{\frac{2}{3}}{\frac{4}{5}}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
10=x\times \frac{2}{3}\times \frac{5}{4}
Divide \frac{2}{3} by \frac{4}{5} by multiplying \frac{2}{3} by the reciprocal of \frac{4}{5}.
10=x\times \frac{2\times 5}{3\times 4}
Multiply \frac{2}{3} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
10=x\times \frac{10}{12}
Do the multiplications in the fraction \frac{2\times 5}{3\times 4}.
10=x\times \frac{5}{6}
Reduce the fraction \frac{10}{12} to lowest terms by extracting and canceling out 2.
x\times \frac{5}{6}=10
Swap sides so that all variable terms are on the left hand side.
x=10\times \frac{6}{5}
Multiply both sides by \frac{6}{5}, the reciprocal of \frac{5}{6}.
x=\frac{10\times 6}{5}
Express 10\times \frac{6}{5} as a single fraction.
x=\frac{60}{5}
Multiply 10 and 6 to get 60.
x=12
Divide 60 by 5 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}