Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+21x+10
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=21 ab=2\times 10=20
Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx+10. To find a and b, set up a system to be solved.
1,20 2,10 4,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 20.
1+20=21 2+10=12 4+5=9
Calculate the sum for each pair.
a=1 b=20
The solution is the pair that gives sum 21.
\left(2x^{2}+x\right)+\left(20x+10\right)
Rewrite 2x^{2}+21x+10 as \left(2x^{2}+x\right)+\left(20x+10\right).
x\left(2x+1\right)+10\left(2x+1\right)
Factor out x in the first and 10 in the second group.
\left(2x+1\right)\left(x+10\right)
Factor out common term 2x+1 by using distributive property.
2x^{2}+21x+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-21±\sqrt{21^{2}-4\times 2\times 10}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-21±\sqrt{441-4\times 2\times 10}}{2\times 2}
Square 21.
x=\frac{-21±\sqrt{441-8\times 10}}{2\times 2}
Multiply -4 times 2.
x=\frac{-21±\sqrt{441-80}}{2\times 2}
Multiply -8 times 10.
x=\frac{-21±\sqrt{361}}{2\times 2}
Add 441 to -80.
x=\frac{-21±19}{2\times 2}
Take the square root of 361.
x=\frac{-21±19}{4}
Multiply 2 times 2.
x=-\frac{2}{4}
Now solve the equation x=\frac{-21±19}{4} when ± is plus. Add -21 to 19.
x=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{40}{4}
Now solve the equation x=\frac{-21±19}{4} when ± is minus. Subtract 19 from -21.
x=-10
Divide -40 by 4.
2x^{2}+21x+10=2\left(x-\left(-\frac{1}{2}\right)\right)\left(x-\left(-10\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{2} for x_{1} and -10 for x_{2}.
2x^{2}+21x+10=2\left(x+\frac{1}{2}\right)\left(x+10\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
2x^{2}+21x+10=2\times \frac{2x+1}{2}\left(x+10\right)
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
2x^{2}+21x+10=\left(2x+1\right)\left(x+10\right)
Cancel out 2, the greatest common factor in 2 and 2.