Solve for a
a>40
Share
Copied to clipboard
10+\frac{3}{4}a-\frac{7}{8}a<5
Subtract \frac{7}{8}a from both sides.
10-\frac{1}{8}a<5
Combine \frac{3}{4}a and -\frac{7}{8}a to get -\frac{1}{8}a.
-\frac{1}{8}a<5-10
Subtract 10 from both sides.
-\frac{1}{8}a<-5
Subtract 10 from 5 to get -5.
a>-5\left(-8\right)
Multiply both sides by -8, the reciprocal of -\frac{1}{8}. Since -\frac{1}{8} is negative, the inequality direction is changed.
a>40
Multiply -5 and -8 to get 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}