Solve for x
x=\frac{10\sqrt{4210}-1400}{19}\approx -39.534466953
x=\frac{-10\sqrt{4210}-1400}{19}\approx -107.8339541
Graph
Share
Copied to clipboard
1.9x^{2}+280x=-8100
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
1.9x^{2}+280x-\left(-8100\right)=-8100-\left(-8100\right)
Add 8100 to both sides of the equation.
1.9x^{2}+280x-\left(-8100\right)=0
Subtracting -8100 from itself leaves 0.
1.9x^{2}+280x+8100=0
Subtract -8100 from 0.
x=\frac{-280±\sqrt{280^{2}-4\times 1.9\times 8100}}{2\times 1.9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.9 for a, 280 for b, and 8100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-280±\sqrt{78400-4\times 1.9\times 8100}}{2\times 1.9}
Square 280.
x=\frac{-280±\sqrt{78400-7.6\times 8100}}{2\times 1.9}
Multiply -4 times 1.9.
x=\frac{-280±\sqrt{78400-61560}}{2\times 1.9}
Multiply -7.6 times 8100.
x=\frac{-280±\sqrt{16840}}{2\times 1.9}
Add 78400 to -61560.
x=\frac{-280±2\sqrt{4210}}{2\times 1.9}
Take the square root of 16840.
x=\frac{-280±2\sqrt{4210}}{3.8}
Multiply 2 times 1.9.
x=\frac{2\sqrt{4210}-280}{3.8}
Now solve the equation x=\frac{-280±2\sqrt{4210}}{3.8} when ± is plus. Add -280 to 2\sqrt{4210}.
x=\frac{10\sqrt{4210}-1400}{19}
Divide -280+2\sqrt{4210} by 3.8 by multiplying -280+2\sqrt{4210} by the reciprocal of 3.8.
x=\frac{-2\sqrt{4210}-280}{3.8}
Now solve the equation x=\frac{-280±2\sqrt{4210}}{3.8} when ± is minus. Subtract 2\sqrt{4210} from -280.
x=\frac{-10\sqrt{4210}-1400}{19}
Divide -280-2\sqrt{4210} by 3.8 by multiplying -280-2\sqrt{4210} by the reciprocal of 3.8.
x=\frac{10\sqrt{4210}-1400}{19} x=\frac{-10\sqrt{4210}-1400}{19}
The equation is now solved.
1.9x^{2}+280x=-8100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1.9x^{2}+280x}{1.9}=-\frac{8100}{1.9}
Divide both sides of the equation by 1.9, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{280}{1.9}x=-\frac{8100}{1.9}
Dividing by 1.9 undoes the multiplication by 1.9.
x^{2}+\frac{2800}{19}x=-\frac{8100}{1.9}
Divide 280 by 1.9 by multiplying 280 by the reciprocal of 1.9.
x^{2}+\frac{2800}{19}x=-\frac{81000}{19}
Divide -8100 by 1.9 by multiplying -8100 by the reciprocal of 1.9.
x^{2}+\frac{2800}{19}x+\frac{1400}{19}^{2}=-\frac{81000}{19}+\frac{1400}{19}^{2}
Divide \frac{2800}{19}, the coefficient of the x term, by 2 to get \frac{1400}{19}. Then add the square of \frac{1400}{19} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2800}{19}x+\frac{1960000}{361}=-\frac{81000}{19}+\frac{1960000}{361}
Square \frac{1400}{19} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2800}{19}x+\frac{1960000}{361}=\frac{421000}{361}
Add -\frac{81000}{19} to \frac{1960000}{361} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1400}{19}\right)^{2}=\frac{421000}{361}
Factor x^{2}+\frac{2800}{19}x+\frac{1960000}{361}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1400}{19}\right)^{2}}=\sqrt{\frac{421000}{361}}
Take the square root of both sides of the equation.
x+\frac{1400}{19}=\frac{10\sqrt{4210}}{19} x+\frac{1400}{19}=-\frac{10\sqrt{4210}}{19}
Simplify.
x=\frac{10\sqrt{4210}-1400}{19} x=\frac{-10\sqrt{4210}-1400}{19}
Subtract \frac{1400}{19} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}