Evaluate
\frac{48}{35}\approx 1.371428571
Factor
\frac{3 \cdot 2 ^ {4}}{5 \cdot 7} = 1\frac{13}{35} = 1.3714285714285714
Share
Copied to clipboard
1.8-\frac{3.3-\frac{450}{375}}{\frac{5.6}{\frac{2\times 3+1}{3}}+2.5}
Expand \frac{4.5}{3.75} by multiplying both numerator and the denominator by 100.
1.8-\frac{3.3-\frac{6}{5}}{\frac{5.6}{\frac{2\times 3+1}{3}}+2.5}
Reduce the fraction \frac{450}{375} to lowest terms by extracting and canceling out 75.
1.8-\frac{\frac{33}{10}-\frac{6}{5}}{\frac{5.6}{\frac{2\times 3+1}{3}}+2.5}
Convert decimal number 3.3 to fraction \frac{33}{10}.
1.8-\frac{\frac{33}{10}-\frac{12}{10}}{\frac{5.6}{\frac{2\times 3+1}{3}}+2.5}
Least common multiple of 10 and 5 is 10. Convert \frac{33}{10} and \frac{6}{5} to fractions with denominator 10.
1.8-\frac{\frac{33-12}{10}}{\frac{5.6}{\frac{2\times 3+1}{3}}+2.5}
Since \frac{33}{10} and \frac{12}{10} have the same denominator, subtract them by subtracting their numerators.
1.8-\frac{\frac{21}{10}}{\frac{5.6}{\frac{2\times 3+1}{3}}+2.5}
Subtract 12 from 33 to get 21.
1.8-\frac{\frac{21}{10}}{\frac{5.6\times 3}{2\times 3+1}+2.5}
Divide 5.6 by \frac{2\times 3+1}{3} by multiplying 5.6 by the reciprocal of \frac{2\times 3+1}{3}.
1.8-\frac{\frac{21}{10}}{\frac{16.8}{2\times 3+1}+2.5}
Multiply 5.6 and 3 to get 16.8.
1.8-\frac{\frac{21}{10}}{\frac{16.8}{6+1}+2.5}
Multiply 2 and 3 to get 6.
1.8-\frac{\frac{21}{10}}{\frac{16.8}{7}+2.5}
Add 6 and 1 to get 7.
1.8-\frac{\frac{21}{10}}{\frac{168}{70}+2.5}
Expand \frac{16.8}{7} by multiplying both numerator and the denominator by 10.
1.8-\frac{\frac{21}{10}}{\frac{12}{5}+2.5}
Reduce the fraction \frac{168}{70} to lowest terms by extracting and canceling out 14.
1.8-\frac{\frac{21}{10}}{\frac{12}{5}+\frac{5}{2}}
Convert decimal number 2.5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
1.8-\frac{\frac{21}{10}}{\frac{24}{10}+\frac{25}{10}}
Least common multiple of 5 and 2 is 10. Convert \frac{12}{5} and \frac{5}{2} to fractions with denominator 10.
1.8-\frac{\frac{21}{10}}{\frac{24+25}{10}}
Since \frac{24}{10} and \frac{25}{10} have the same denominator, add them by adding their numerators.
1.8-\frac{\frac{21}{10}}{\frac{49}{10}}
Add 24 and 25 to get 49.
1.8-\frac{21}{10}\times \frac{10}{49}
Divide \frac{21}{10} by \frac{49}{10} by multiplying \frac{21}{10} by the reciprocal of \frac{49}{10}.
1.8-\frac{21\times 10}{10\times 49}
Multiply \frac{21}{10} times \frac{10}{49} by multiplying numerator times numerator and denominator times denominator.
1.8-\frac{21}{49}
Cancel out 10 in both numerator and denominator.
1.8-\frac{3}{7}
Reduce the fraction \frac{21}{49} to lowest terms by extracting and canceling out 7.
\frac{9}{5}-\frac{3}{7}
Convert decimal number 1.8 to fraction \frac{18}{10}. Reduce the fraction \frac{18}{10} to lowest terms by extracting and canceling out 2.
\frac{63}{35}-\frac{15}{35}
Least common multiple of 5 and 7 is 35. Convert \frac{9}{5} and \frac{3}{7} to fractions with denominator 35.
\frac{63-15}{35}
Since \frac{63}{35} and \frac{15}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{48}{35}
Subtract 15 from 63 to get 48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}