Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1.8\times \frac{1}{100000}=\frac{x^{2}}{0.5}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
\frac{9}{500000}=\frac{x^{2}}{0.5}
Multiply 1.8 and \frac{1}{100000} to get \frac{9}{500000}.
\frac{x^{2}}{0.5}=\frac{9}{500000}
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{9}{500000}\times 0.5
Multiply both sides by 0.5.
x^{2}=\frac{9}{1000000}
Multiply \frac{9}{500000} and 0.5 to get \frac{9}{1000000}.
x=\frac{3}{1000} x=-\frac{3}{1000}
Take the square root of both sides of the equation.
1.8\times \frac{1}{100000}=\frac{x^{2}}{0.5}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
\frac{9}{500000}=\frac{x^{2}}{0.5}
Multiply 1.8 and \frac{1}{100000} to get \frac{9}{500000}.
\frac{x^{2}}{0.5}=\frac{9}{500000}
Swap sides so that all variable terms are on the left hand side.
\frac{x^{2}}{0.5}-\frac{9}{500000}=0
Subtract \frac{9}{500000} from both sides.
2x^{2}-\frac{9}{500000}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-\frac{9}{500000}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -\frac{9}{500000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-\frac{9}{500000}\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-\frac{9}{500000}\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{\frac{9}{62500}}}{2\times 2}
Multiply -8 times -\frac{9}{500000}.
x=\frac{0±\frac{3}{250}}{2\times 2}
Take the square root of \frac{9}{62500}.
x=\frac{0±\frac{3}{250}}{4}
Multiply 2 times 2.
x=\frac{3}{1000}
Now solve the equation x=\frac{0±\frac{3}{250}}{4} when ± is plus.
x=-\frac{3}{1000}
Now solve the equation x=\frac{0±\frac{3}{250}}{4} when ± is minus.
x=\frac{3}{1000} x=-\frac{3}{1000}
The equation is now solved.