Solve for x
x = -\frac{160}{9} = -17\frac{7}{9} \approx -17.777777778
Graph
Share
Copied to clipboard
1.8\left(-x+30\right)=86-0
Variable x cannot be equal to 30 since division by zero is not defined. Multiply both sides of the equation by -x+30.
-1.8x+54=86-0
Use the distributive property to multiply 1.8 by -x+30.
-1.8x+54=86
Subtract 0 from 86 to get 86.
-1.8x=86-54
Subtract 54 from both sides.
-1.8x=32
Subtract 54 from 86 to get 32.
x=\frac{32}{-1.8}
Divide both sides by -1.8.
x=\frac{320}{-18}
Expand \frac{32}{-1.8} by multiplying both numerator and the denominator by 10.
x=-\frac{160}{9}
Reduce the fraction \frac{320}{-18} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}