Solve for x
x<\frac{150}{49}
Graph
Share
Copied to clipboard
1.6x-9+x<1-\frac{2}{3}x
Subtract 5 from -4 to get -9.
2.6x-9<1-\frac{2}{3}x
Combine 1.6x and x to get 2.6x.
2.6x-9+\frac{2}{3}x<1
Add \frac{2}{3}x to both sides.
\frac{49}{15}x-9<1
Combine 2.6x and \frac{2}{3}x to get \frac{49}{15}x.
\frac{49}{15}x<1+9
Add 9 to both sides.
\frac{49}{15}x<10
Add 1 and 9 to get 10.
x<10\times \frac{15}{49}
Multiply both sides by \frac{15}{49}, the reciprocal of \frac{49}{15}. Since \frac{49}{15} is positive, the inequality direction remains the same.
x<\frac{10\times 15}{49}
Express 10\times \frac{15}{49} as a single fraction.
x<\frac{150}{49}
Multiply 10 and 15 to get 150.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}