Solve for x
x=2.6
x=-2.6
Graph
Share
Copied to clipboard
6.76=x^{2}
Multiply 1.69 and 4 to get 6.76.
x^{2}=6.76
Swap sides so that all variable terms are on the left hand side.
x^{2}-6.76=0
Subtract 6.76 from both sides.
\left(x-\frac{13}{5}\right)\left(x+\frac{13}{5}\right)=0
Consider x^{2}-6.76. Rewrite x^{2}-6.76 as x^{2}-\left(\frac{13}{5}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{13}{5} x=-\frac{13}{5}
To find equation solutions, solve x-\frac{13}{5}=0 and x+\frac{13}{5}=0.
6.76=x^{2}
Multiply 1.69 and 4 to get 6.76.
x^{2}=6.76
Swap sides so that all variable terms are on the left hand side.
x=\frac{13}{5} x=-\frac{13}{5}
Take the square root of both sides of the equation.
6.76=x^{2}
Multiply 1.69 and 4 to get 6.76.
x^{2}=6.76
Swap sides so that all variable terms are on the left hand side.
x^{2}-6.76=0
Subtract 6.76 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-6.76\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -6.76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-6.76\right)}}{2}
Square 0.
x=\frac{0±\sqrt{27.04}}{2}
Multiply -4 times -6.76.
x=\frac{0±\frac{26}{5}}{2}
Take the square root of 27.04.
x=\frac{13}{5}
Now solve the equation x=\frac{0±\frac{26}{5}}{2} when ± is plus.
x=-\frac{13}{5}
Now solve the equation x=\frac{0±\frac{26}{5}}{2} when ± is minus.
x=\frac{13}{5} x=-\frac{13}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}