Solve for x
x=\frac{8363}{801000}\approx 0.010440699
Graph
Share
Copied to clipboard
1.6726\times 10^{-27}\times 10^{13}=1.602\times 10^{-19}\times 10^{7}x
Cancel out 1.9 on both sides.
1.6726\times 10^{-14}=1.602\times 10^{-19}\times 10^{7}x
To multiply powers of the same base, add their exponents. Add -27 and 13 to get -14.
1.6726\times 10^{-14}=1.602\times 10^{-12}x
To multiply powers of the same base, add their exponents. Add -19 and 7 to get -12.
1.6726\times \frac{1}{100000000000000}=1.602\times 10^{-12}x
Calculate 10 to the power of -14 and get \frac{1}{100000000000000}.
\frac{8363}{500000000000000000}=1.602\times 10^{-12}x
Multiply 1.6726 and \frac{1}{100000000000000} to get \frac{8363}{500000000000000000}.
\frac{8363}{500000000000000000}=1.602\times \frac{1}{1000000000000}x
Calculate 10 to the power of -12 and get \frac{1}{1000000000000}.
\frac{8363}{500000000000000000}=\frac{801}{500000000000000}x
Multiply 1.602 and \frac{1}{1000000000000} to get \frac{801}{500000000000000}.
\frac{801}{500000000000000}x=\frac{8363}{500000000000000000}
Swap sides so that all variable terms are on the left hand side.
x=\frac{8363}{500000000000000000}\times \frac{500000000000000}{801}
Multiply both sides by \frac{500000000000000}{801}, the reciprocal of \frac{801}{500000000000000}.
x=\frac{8363}{801000}
Multiply \frac{8363}{500000000000000000} and \frac{500000000000000}{801} to get \frac{8363}{801000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}