Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1.5x^{2}-9.7x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9.7\right)±\sqrt{\left(-9.7\right)^{2}-4\times 1.5}}{2\times 1.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.5 for a, -9.7 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9.7\right)±\sqrt{94.09-4\times 1.5}}{2\times 1.5}
Square -9.7 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-9.7\right)±\sqrt{94.09-6}}{2\times 1.5}
Multiply -4 times 1.5.
x=\frac{-\left(-9.7\right)±\sqrt{88.09}}{2\times 1.5}
Add 94.09 to -6.
x=\frac{-\left(-9.7\right)±\frac{\sqrt{8809}}{10}}{2\times 1.5}
Take the square root of 88.09.
x=\frac{9.7±\frac{\sqrt{8809}}{10}}{2\times 1.5}
The opposite of -9.7 is 9.7.
x=\frac{9.7±\frac{\sqrt{8809}}{10}}{3}
Multiply 2 times 1.5.
x=\frac{\sqrt{8809}+97}{3\times 10}
Now solve the equation x=\frac{9.7±\frac{\sqrt{8809}}{10}}{3} when ± is plus. Add 9.7 to \frac{\sqrt{8809}}{10}.
x=\frac{\sqrt{8809}+97}{30}
Divide \frac{97+\sqrt{8809}}{10} by 3.
x=\frac{97-\sqrt{8809}}{3\times 10}
Now solve the equation x=\frac{9.7±\frac{\sqrt{8809}}{10}}{3} when ± is minus. Subtract \frac{\sqrt{8809}}{10} from 9.7.
x=\frac{97-\sqrt{8809}}{30}
Divide \frac{97-\sqrt{8809}}{10} by 3.
x=\frac{\sqrt{8809}+97}{30} x=\frac{97-\sqrt{8809}}{30}
The equation is now solved.
1.5x^{2}-9.7x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
1.5x^{2}-9.7x+1-1=-1
Subtract 1 from both sides of the equation.
1.5x^{2}-9.7x=-1
Subtracting 1 from itself leaves 0.
\frac{1.5x^{2}-9.7x}{1.5}=-\frac{1}{1.5}
Divide both sides of the equation by 1.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{9.7}{1.5}\right)x=-\frac{1}{1.5}
Dividing by 1.5 undoes the multiplication by 1.5.
x^{2}-\frac{97}{15}x=-\frac{1}{1.5}
Divide -9.7 by 1.5 by multiplying -9.7 by the reciprocal of 1.5.
x^{2}-\frac{97}{15}x=-\frac{2}{3}
Divide -1 by 1.5 by multiplying -1 by the reciprocal of 1.5.
x^{2}-\frac{97}{15}x+\left(-\frac{97}{30}\right)^{2}=-\frac{2}{3}+\left(-\frac{97}{30}\right)^{2}
Divide -\frac{97}{15}, the coefficient of the x term, by 2 to get -\frac{97}{30}. Then add the square of -\frac{97}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{97}{15}x+\frac{9409}{900}=-\frac{2}{3}+\frac{9409}{900}
Square -\frac{97}{30} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{97}{15}x+\frac{9409}{900}=\frac{8809}{900}
Add -\frac{2}{3} to \frac{9409}{900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{97}{30}\right)^{2}=\frac{8809}{900}
Factor x^{2}-\frac{97}{15}x+\frac{9409}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{97}{30}\right)^{2}}=\sqrt{\frac{8809}{900}}
Take the square root of both sides of the equation.
x-\frac{97}{30}=\frac{\sqrt{8809}}{30} x-\frac{97}{30}=-\frac{\sqrt{8809}}{30}
Simplify.
x=\frac{\sqrt{8809}+97}{30} x=\frac{97-\sqrt{8809}}{30}
Add \frac{97}{30} to both sides of the equation.